Higher differentiability of solutions of parabolic systems with discontinuous coefficients

2016 ◽  
Vol 94 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Flavia Giannetti ◽  
Antonia Passarelli di Napoli ◽  
Christoph Scheven
2019 ◽  
Vol 150 (1) ◽  
pp. 419-451
Author(s):  
Flavia Giannetti ◽  
Antonia Passarelli di Napoli ◽  
Christoph Scheven

AbstractWe consider weak solutions $u:\Omega _T\to {\open R}^N$ to parabolic systems of the type $$u_t-{\rm div}\;a(x,t,Du) = 0\quad {\rm in}\;\Omega _T = \Omega \times (0,T),$$where the function a(x, t, ξ) satisfies (p, q)-growth conditions. We give an a priori estimate for weak solutions in the case of possibly discontinuous coefficients. More precisely, the partial maps $x\mapsto a(x,t,\xi )$ under consideration may not be continuous, but may only possess a Sobolev-type regularity. In a certain sense, our assumption means that the weak derivatives $D_xa(\cdot ,\cdot ,\xi )$ are contained in the class $L^\alpha (0,T;L^\beta (\Omega ))$, where the integrability exponents $\alpha ,\beta $ are coupled by $$\displaystyle{{p(n + 2)-2n} \over {2\alpha }} + \displaystyle{n \over \beta } = 1-\kappa $$for some κ ∈ (0,1). For the gap between the two growth exponents we assume $$2 \les p < q \les p + \displaystyle{{2\kappa } \over {n + 2}}.$$Under further assumptions on the integrability of the spatial gradient, we prove a result on higher differentiability in space as well as the existence of a weak time derivative $u_t\in L^{p/(q-1)}_{{\rm loc}}(\Omega _T)$. We use the corresponding a priori estimate to deduce the existence of solutions of Cauchy–Dirichlet problems with the mentioned higher differentiability property.


2019 ◽  
Vol 31 (6) ◽  
pp. 1501-1516 ◽  
Author(s):  
Chiara Gavioli

AbstractWe establish the higher differentiability of integer order of solutions to a class of obstacle problems assuming that the gradient of the obstacle possesses an extra integer differentiability property. We deal with the case in which the solutions to the obstacle problems satisfy a variational inequality of the form\int_{\Omega}\langle\mathcal{A}(x,Du),D(\varphi-u)\rangle\,dx\geq 0\quad\text{% for all }\varphi\in\mathcal{K}_{\psi}(\Omega).The main novelty is that the operator {\mathcal{A}} satisfies the so-called {p,q}-growth conditions with p and q linked by the relation\frac{q}{p}<1+\frac{1}{n}-\frac{1}{r},for {r>n}. Here {\psi\in W^{1,p}(\Omega)} is a fixed function, called obstacle, for which we assume {D\psi\in W^{1,2q-p}_{\mathrm{loc}}(\Omega)}, and {\mathcal{K}_{\psi}=\{w\in W^{1,p}(\Omega):w\geq\psi\text{ a.e. in }\Omega\}} is the class of admissible functions. We require for the partial map {x\mapsto\mathcal{A}(x,\xi\/)} a higher differentiability of Sobolev order in the space {W^{1,r}}, with {r>n} satisfying the condition above.


2020 ◽  
Vol 6 (2) ◽  
pp. 751-771 ◽  
Author(s):  
Claudia Capone ◽  
Teresa Radice

Abstract In this paper we establish the higher differentiability of solutions to the Dirichlet problem $$\begin{aligned} {\left\{ \begin{array}{ll} \text {div} (A(x, Du)) + b(x)u(x)=f &{} \text {in}\, \Omega \\ u=0 &{} \text {on} \, \partial \Omega \end{array}\right. } \end{aligned}$$ div ( A ( x , D u ) ) + b ( x ) u ( x ) = f in Ω u = 0 on ∂ Ω under a Sobolev assumption on the partial map $$x \rightarrow A(x, \xi )$$ x → A ( x , ξ ) . The novelty here is that we take advantage from the regularizing effect of the lower order term to deal with bounded solutions.


2019 ◽  
Vol 12 (1) ◽  
pp. 85-110 ◽  
Author(s):  
Raffaella Giova ◽  
Antonia Passarelli di Napoli

AbstractWe prove the higher differentiability and the higher integrability of the a priori bounded local minimizers of integral functionals of the form\mathcal{F}(v,\Omega)=\int_{\Omega}f(x,Dv(x))\,{\mathrm{d}}x,with convex integrand satisfyingp-growth conditions with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to thex-variable belongs to a suitable Sobolev space. The a priori boundedness of the minimizers allows us to obtain the higher differentiability under a Sobolev assumption which is independent on the dimensionnand that, in the case{p\leq n-2}, improves previous known results. We also deal with solutions of elliptic systems with discontinuous coefficients under the so-called Uhlenbeck structure. In this case, it is well known that the solutions are locally bounded and therefore we obtain analogous regularity results without the a priori boundedness assumption.


Sign in / Sign up

Export Citation Format

Share Document