The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model

2021 ◽  
Vol 285 ◽  
pp. 321-382
Author(s):  
Yuta Ishii
2021 ◽  
Vol 240 (2) ◽  
pp. 809-875
Author(s):  
Marina A. Ferreira ◽  
Jani Lukkarinen ◽  
Alessia Nota ◽  
Juan J. L. Velázquez

AbstractWe study coagulation equations under non-equilibrium conditions which are induced by the addition of a source term for small cluster sizes. We consider both discrete and continuous coagulation equations, and allow for a large class of coagulation rate kernels, with the main restriction being boundedness from above and below by certain weight functions. The weight functions depend on two power law parameters, and the assumptions cover, in particular, the commonly used free molecular and diffusion limited aggregation coagulation kernels. Our main result shows that the two weight function parameters already determine whether there exists a stationary solution under the presence of a source term. In particular, we find that the diffusive kernel allows for the existence of stationary solutions while there cannot be any such solutions for the free molecular kernel. The argument to prove the non-existence of solutions relies on a novel power law lower bound, valid in the appropriate parameter regime, for the decay of stationary solutions with a constant flux. We obtain optimal lower and upper estimates of the solutions for large cluster sizes, and prove that the solutions of the discrete model behave asymptotically as solutions of the continuous model.


1989 ◽  
Vol 40 (18) ◽  
pp. 12531-12534 ◽  
Author(s):  
H. Trinkaus ◽  
C. Abromeit ◽  
J. Villain

Author(s):  
Victor A. Galaktionov ◽  
Sergey A. Posashkov

SynopsisIn this paper we prove a certain monotonicity in time of non-negative classical solutions of the Cauchy problem for the quasilinear uniformly parabolic equation u1 = (ϕ(u))xx + Q(u) in wT = (0, T] × R1 with bounded sufficiently smooth initial function u(0, x) = uo(x)≧0 in Rl. We assume that ϕ(u) and Q(u) are smooth functions in [0, +∞) and ϕ′(u) >0, Q(u) > 0 for u > 0. Under some additional hypothesis on the growth of Q(u)ϕ′(u) at infinity, it is proved that if u(to, xo) becomes sufficiently large at some point (to, xo) ∈ wT, then ut(t, x0) ≧0 for all t ∈ [t0, T]. The proof is based on the method of intersection comparison of the solution with the set of the stationary solutions of the same equation. Some generalisations of this property for a quasilinear degenerate parabolic equation are discussed.


Sign in / Sign up

Export Citation Format

Share Document