A desquamation paradox of atopic dermatitis–Markedly remaining corneodesmosomes despite the increased serine protease activity in vitro

2013 ◽  
Vol 69 (2) ◽  
pp. e41
Author(s):  
Satomi Igawa ◽  
Shin Iinuma ◽  
Mari Kishibe ◽  
Masako Minami-Hori ◽  
Masaru Honma ◽  
...  
2001 ◽  
Vol 285 (4) ◽  
pp. 863-872 ◽  
Author(s):  
Marie-Thérèse Château ◽  
Véronique Robert-Hebmann ◽  
Christian Devaux ◽  
Jean-Bernard Lazaro ◽  
Bruno Canard ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 913 ◽  
Author(s):  
Hayato Nomura ◽  
Mutsumi Suganuma ◽  
Takuya Takeichi ◽  
Michihiro Kono ◽  
Yuki Isokane ◽  
...  

The serine proteases kallikrein-related peptidase (KLK) 5 and KLK7 cleave cell adhesion molecules in the epidermis. Aberrant epidermal serine protease activity is thought to play an important role in the pathogenesis of atopic dermatitis (AD). We collected the stratum corneum (SC) from healthy individuals (n = 46) and AD patients (n = 63) by tape stripping and then measuring the trypsin- and chymotrypsin-like serine protease activity. We also analyzed the p.D386N and p.E420K of SPINK5 variants and loss-of-function mutations of FLG in the AD patients. The serine protease activity in the SC was increased not only in AD lesions but also in non-lesions of AD patients. We found, generally, that there was a positive correlation between the serine protease activity in the SC and the total serum immunoglobulin E (IgE) levels, serum thymus and activation-regulated chemokine (TARC) levels, and peripheral blood eosinophil counts. Moreover, the p.D386N or p.E420K in SPINK5 and FLG mutations were not significantly associated with the SC’s serine protease activity. Epidermal serine protease activity was increased even in non-lesions of AD patients. Such activity was found to correlate with a number of biomarkers of AD. Further investigations of serine proteases might provide new treatments and prophylaxis for AD.


2018 ◽  
Vol 399 (9) ◽  
pp. 1091-1097
Author(s):  
Yaowu He ◽  
Janet C. Reid ◽  
Hui He ◽  
Brittney S. Harrington ◽  
Brittney Finlayson ◽  
...  

Abstract The cellular receptor CUB domain containing protein 1 (CDCP1) is commonly elevated and functionally important in a range of cancers. CDCP1 is cleaved by serine proteases at adjacent sites, arginine 368 (R368) and lysine 369 (K369), which induces cell migration in vitro and metastasis in vivo. We demonstrate that membrane localization of serine protease activity increases efficacy of cleavage of CDCP1, and that both secreted and membrane anchored serine proteases can have distinct preferences for cleaving at CDCP1-R368 and CDCP1-K369. Approaches that disrupt membrane localization of CDCP1 cleaving serine proteases may interfere with the cancer promoting effects of CDCP1 proteolysis.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2299-2307 ◽  
Author(s):  
Masayuki Okada ◽  
Souichi Adachi ◽  
Tsuyoshi Imai ◽  
Ken-ichiro Watanabe ◽  
Shin-ya Toyokuni ◽  
...  

Abstract Caspase-independent programmed cell death can exhibit either an apoptosis-like or a necrosis-like morphology. The ABL kinase inhibitor, imatinib mesylate, has been reported to induce apoptosis of BCR-ABL–positive cells in a caspase-dependent fashion. We investigated whether caspases alone were the mediators of imatinib mesylate–induced cell death. In contrast to previous reports, we found that a broad caspase inhibitor, zVAD-fmk, failed to prevent the death of imatinib mesylate–treated BCR-ABL–positive human leukemic cells. Moreover, zVAD-fmk–preincubated, imatinib mesylate–treated cells exhibited a necrosis-like morphology characterized by cellular pyknosis, cytoplasmic vacuolization, and the absence of nuclear signs of apoptosis. These cells manifested a loss of the mitochondrial transmembrane potential, indicating the mitochondrial involvement in this caspase-independent necrosis. We excluded the participation of several mitochondrial factors possibly involved in caspase-independent cell death such as apoptosis-inducing factor, endonuclease G, and reactive oxygen species. However, we observed the mitochondrial release of the serine protease Omi/HtrA2 into the cytosol of the cells treated with imatinib mesylate or zVAD-fmk plus imatinib mesylate. Furthermore, serine protease inhibitors prevented the caspase-independent necrosis. Taken together, our results suggest that imatinib mesylate induces a caspase-independent, necrosis-like programmed cell death mediated by the serine protease activity of Omi/HtrA2.


2011 ◽  
Vol 47 (3) ◽  
pp. 345-353 ◽  
Author(s):  
P. Mäntylä ◽  
E. Buduneli ◽  
G. Emingil ◽  
T. Tervahartiala ◽  
P. J. Pussinen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document