Transcriptome landscape of myeloid cells in human skin reveals diversity, rare populations and putative DC progenitors

2020 ◽  
Vol 97 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Dan Xue ◽  
Tracy Tabib ◽  
Christina Morse ◽  
Robert Lafyatis
2018 ◽  
Vol 138 (3) ◽  
pp. 618-626 ◽  
Author(s):  
Parichat Duangkhae ◽  
Geza Erdos ◽  
Kate D. Ryman ◽  
Simon C. Watkins ◽  
Louis D. Falo ◽  
...  

2019 ◽  
Author(s):  
Brigitta M. Laksono ◽  
Paola Fortugno ◽  
Bernadien M. Nijmeijer ◽  
Rory D. de Vries ◽  
Sonia Cordisco ◽  
...  

AbstractMeasles is characterised by fever and a maculopapular skin rash, which is associated with immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Longitudinal analysis of the skin of experimentally MV-infected NHPs demonstrated that infection in the skin precedes onset of rash by several days. MV infection was initiated in lymphoid and myeloid cells in the dermis before dissemination to the epidermal keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal ones. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy or nectin-4-deficient donors. These experiments demonstrated that MV infection of keratinocytes is nectin-4-dependent, and nectin-4 expression was higher in differentiated than in proliferating keratinocytes. Based on these data, we hypothesise that measles skin rash is initiated by migrating MV-infected lymphocytes that infect dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperaemia and oedema, which give the appearance of morbilliform skin rash.Author SummarySeveral viral infections are associated with skin rash, including parvovirus B19, human herpesvirus type 6, dengue virus and rubella virus. However, the archetype virus infection that leads to skin rash is measles. Although all of these viral exanthemata often appear similar, their pathogenesis is different. In the case of measles, the appearance of skin rash is a sign that the immune system is clearing MV-infected cells from the skin. How the virus reaches the skin and is locally disseminated remains unknown. Here we combine observations and expertise from pathologists, dermatologists, virologists and immunologists to delineate the pathogenesis of measles skin rash. We show that MV infection of dermal myeloid and lymphoid cells precedes viral dissemination to the epidermal keratinocytes. We speculate that immune-mediated clearance of these infected cells results in hyperaemia and oedema, explaining the redness of the skin and the slightly elevated spots of the morbilliform rash.


Author(s):  
Douglas R. Keene ◽  
Robert W. Glanville ◽  
Eva Engvall

A mouse monoclonal antibody (5C6) prepared against human type VI collagen (1) has been used in this study to immunolocalize type VI collagen in human skin. The enbloc method used involves exposing whole tissue pieces to primary antibody and 5 nm gold conjugated secondary antibody before fixation, and has been described in detail elsewhere (2).Biopsies were taken from individuals ranging in age from neonate to 65 years old. By immuno-electron microscopy, type VI collagen is found to be distributed as a fine branching network closely associated with (but not attached to) banded collagen fibrils containing types I and III collagen (Fig. 1). It appears to enwrap fibers, to weave between individual fibrils within a fiber, and to span the distance separating fibers, creating a “web-like network” which entraps fibers within deep papillary and reticular dermal layers (Fig. 2). Relative to that in the dermal matrix, the concentration of type VI collagen is higher around endothelial basement membranes limiting the outer boundaries of nerves, capillaries, and fat cells (Fig. 3).


Author(s):  
A. P. Lupulescu ◽  
H. Pinkus ◽  
D. J. Birmingham

Our laboratory is engaged in the study of the effect of different chemical agents on human skin, using electron microscopy. Previous investigations revealed that topical use of a strong alkali (NaOH 1N) or acid (HCl 1N), induces ultrastructural changes in the upper layers of human epidermis. In the current experiments, acetone and kerosene, which are primarily lipid solvents, were topically used on the volar surface of the forearm of Caucasian and Negro volunteers. Skin specimens were bioptically removed after 90 min. exposure and 72. hours later, fixed in 3% buffered glutaraldehyde, postfixed in 1% phosphate osmium tetroxide, then flat embedded in Epon.


Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


Author(s):  
L.X. Oakford ◽  
S.D. Dimitrijevich ◽  
R. Gracy

In intact skin the epidermal layer is a dynamic tissue component which is maintained by a basal layer of mitotically active cells. The protective upper epidermis, the stratum corneum, is generated by differentiation of the suprabasal keratinocytes which eventually desquamate as anuclear comeocytes. A similar sequence of events is observed in vitro in the non-contracting human skin equivalent (HSE) which was developed in this lab (1). As a part of the definition process for this model of living skin we are examining its ultrastructural features. Since desmosomes are important in maintaining cell-cell interactions in stratified epithelia their distribution in HSE was examined.


JAMA ◽  
1965 ◽  
Vol 194 (2) ◽  
pp. 149-151 ◽  
Author(s):  
R. B. Berggren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document