viral dissemination
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 47)

H-INDEX

26
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Igor M Rouzine

It remains unclear why HIV persists in most untreated individuals, and why a small minority of individuals can control the virus, either spontaneously or after an early treatment. The present work motivated by the striking differences in the functional avidity of CD4 T cells discovered between patient cohorts in a recent study [1] offers an experimentally–testable mathematical model that explains the diverse outcome of infection. The model predicts an arms race between viral dissemination and the proliferation of HIV-specific CD4 helper cells leading to one of two states: a low-viremia state or a high-viremia state. Helper CD4 cells with a higher avidity favor virus control. The parameter segregating spontaneous and post-treatment controllers is the infectivity asymmetry between activated and resting CD4 T cells. The predictions are found to be consistent with the data from [1] and with data on the avidity CD8 T cells [2]. I also analyze the alternative explanation of T cell exhaustion previously proposed to explain the diverse patient cohorts and demonstrate that it does not explain these and some other experimental data.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2299
Author(s):  
Muhammad Riadul Haque Hossainey ◽  
Amulya Yaparla ◽  
Kelsey A. Hauser ◽  
Tyler E. Moore ◽  
Leon Grayfer

Infections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The Xenopus laevis frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen. In turn, MΦ differentiation and functionality depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and iterleukin-34 (IL-34) cytokines. Our past work indicated that X. laevis CSF-1 and IL-34 give rise to morphologically and functionally distinct frog MΦ subsets, and that these CSF-1- and IL-34-MΦs respectively confer susceptibility and antiviral resistance to FV3. Because FV3 targets the frog kidneys and establishes chronic infections therein, presently we examined the roles of the frog CSF-1- and IL-34-MΦs in seeding and maintaining these chronic kidney infections. Our findings indicate that the frog CSF-1-MΦs result in more prominent kidney FV3 infections, which develop into greater reservoirs of lingering FV3 marked by infiltrating leukocytes, fibrosis, and overall immunosuppressive states. Moreover, the antiviral effects of IL-34-MΦs are short-lived and are lost as FV3 infections progress.


2021 ◽  
Author(s):  
Tiago Graf ◽  
Gonzalo Bello ◽  
Felipe Gomes Naveca ◽  
Marcelo Gomes ◽  
Vanessa Leiko Oikawa Cardoso ◽  
...  

The COVID-19 epidemic in Brazil experienced two major country-wide lineage replacements, the first driven by the lineage P.2, formerly classified as variant of interest (VOI) Zeta in late 2020 and the second by the variant of concern (VOC) Gamma in early 2021. To better understand how these SARS-CoV-2 lineage turnovers occurred in Brazil, we analyzed 11,724 high-quality SARS-CoV-2 whole genomes of samples collected in different country regions between September 2020 and April 2021. Our findings indicate that the spatial dispersion of both variants in Brazil was driven by short and long-distance viral transmission. The lineage P.2 harboring Spike mutation E484K probably emerged around late July 2020 in the Rio de Janeiro (RJ) state, which contributed with most (~50%) inter-state viral disseminations, and only became locally established in most Brazilian states by October 2020. The VOC Gamma probably arose in November 2020 in the Amazonas (AM) state, which was responsible for 60-70% of the inter-state viral dissemination, and the earliest timing of community transmission of this VOC in many Brazilian states was already traced to December 2020. We estimate that variant Gamma was 1.56-3.06 more transmissible than variant P.2 co-circulating in RJ and that the median effective reproductive number (Re) of Gamma in RJ and SP states (Re = 1.59-1.91) was lower than in AM (Re = 3.55). In summary, although the epicenter of the lineage P.2 dissemination in Brazil was the heavily interconnected Southeastern region, it displayed a slower rate of spatial spread than the VOC Gamma originated in the more isolated Northern Brazilian region. Our findings also support that the VOC Gamma was more transmissible than lineage P.2, although the viral Re of the VOC varied according to the geographic context.


2021 ◽  
Author(s):  
Kathryn S Carpentier ◽  
Ryan M Sheridan ◽  
Cormac J Lucas ◽  
Bennett J Davenport ◽  
Frances S Li ◽  
...  

2021 ◽  
Author(s):  
Catherine Inizan ◽  
Marina Caillet ◽  
Alexandra Desrames ◽  
Perrine Bomme ◽  
Adeline MALLET ◽  
...  

Collective transmission via structures containing several virions has recently emerged as a highly efficient mode of viral spread. Here, we demonstrate that HIV-1 spreads between T lymphocytes in the form of viral particles colonies that are concentrated and sheltered in an extracellular matrix (ECM) lattice enabling their collective transmission upon cell contacts. Intrinsically, ECM-clustered viruses infect T lymphocytes more efficiently than individual viral particles. They preserve HIV-1 transmission from antiretroviral treatment (ArT) and potent broadly neutralizing antibodies. We also show that collagen induced by HIV-1 infection controls the clustering of virions and their collective spread, thereby enhancing infectivity. CD4+ T cells from HIV-1-infected patients produce and transmit ECM-virus clusters, supporting that they could be involved in vivo. This study provides new insights into modes of HIV-1 transmission and identifies a novel fundamental role for collagen in this process. HIV-1 spread via ECM-virus clusters may have important implications for viral dissemination and persistence, including during therapy.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1801
Author(s):  
Natalia Rego ◽  
Cecilia Salazar ◽  
Mercedes Paz ◽  
Alicia Costábile ◽  
Alvaro Fajardo ◽  
...  

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020–February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay’s capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


2021 ◽  
Author(s):  
Madeline J. Churchill ◽  
Haley du Bois ◽  
Taylor A. Heim ◽  
Tenny Mudianto ◽  
Maria M. Steele ◽  
...  

AbstractLymphatic vessels are often considered passive conduits that rapidly flush antigenic material, pathogens, and cells to draining lymph nodes. Recent evidence, however, suggests that lymphatic vessels actively regulate diverse processes from antigen transport to leukocyte trafficking and dietary lipid absorption. Here we tested the hypothesis that dermal lymphatic transport is dynamic and contributes to innate host defense during viral infection. We demonstrate that cutaneous vaccinia virus infection activates the tightening of lymphatic interendothelial junctions, termed zippering, in a VEGFA/VEGFR2-dependent manner. Both antibody-mediated blockade of VEGFA/VEGFR2 and lymphatic-specific deletion of Vegfr2 impaired lymphatic capillary zippering and increased fluid flux out of tissue. Strikingly, inhibition of lymphatic zippering allows viral dissemination to draining lymph nodes independent of dendritic cell migration and impairs CD8+ T cell priming. These data indicate that infection-induced dermal lymphatic capillary zippering is a context-dependent, active mechanism of innate host defense that limits interstitial fluid and virion flux and promotes protective, anti-viral CD8+ T cell responses.SummaryCutaneous infection with vaccinia virus induces VEGFR2-dependent dermal lymphatic capillary zippering. This tightening of lymphatic junctions exacerbates tissue edema, sequesters virus, and promotes anti-viral CD8+ T cell responses. Dermal lymphatic capillaries are therefore an active component of innate host defense.


2021 ◽  
Author(s):  
Natalia Rego ◽  
Cecilia Salazar ◽  
Mercedes Paz ◽  
Alicia Costabile ◽  
Alvaro Fajardo ◽  
...  

Uruguay was able to control the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. We previously identified a B.1.1.28 sublineage carrying mutations Q675H+Q677H in the viral Spike, with local transmission in Rocha, a department bordering Brazil. To understand whether these B.1.1.28+Q675H+Q677H sequences were part of an emergent SARS-CoV-2 lineage broadly disseminated in Uruguay, herein we analyzed the country-wide genetic diversity of viruses between November, 2020 and April, 2021. Our findings support that B.1.1.28+Q675H+Q677H probably arose around November 2020, in Montevideo, Uruguay's capital department. This clade spread to other Uruguayan departments, with evidence of further local transmission clusters. It also spread to the USA and Spain. The Q675H and Q677H mutations are in the proximity of the polybasic cleavage site at the S1/S2 boundary and also arose independently in many SARS-CoV-2 lineages circulating worldwide. Although in Uruguay the B.1.1.28+Q675H+Q677H lineage was dominated by the VOC P.1 since April 2021, the monitoring of the concurrent emergence of Q675H+Q677H in VOIs and/or VOCs should be of worldwide interest.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ajit Mahadev Patil ◽  
Jin Young Choi ◽  
Seong Ok Park ◽  
Erdenebelig Uyangaa ◽  
Bumseok Kim ◽  
...  

Abstract Background The crucial role of type I interferon (IFN-I, IFN-α/β) is well known to control central nervous system (CNS) neuroinflammation caused by neurotrophic flaviviruses such as Japanese encephalitis virus (JEV) and West Nile virus. However, an in-depth analysis of IFN-I signal-dependent cellular factors that govern CNS-restricted tropism in JEV infection in vivo remains to be elucidated. Methods Viral dissemination, tissue tropism, and cytokine production were examined in IFN-I signal-competent and -incompetent mice after JEV inoculation in tissues distal from the CNS such as the footpad. Bone marrow (BM) chimeric models were used for defining hematopoietic and tissue-resident cells in viral dissemination and tissue tropism. Results The paradoxical and interesting finding was that IFN-I signaling was essentially required for CNS neuroinflammation following JEV inoculation in distal footpad tissue. IFN-I signal-competent mice died after a prolonged neurological illness, but IFN-I signal-incompetent mice all succumbed without neurological signs. Rather, IFN-I signal-incompetent mice developed hemorrhage-like disease as evidenced by thrombocytopenia, functional injury of the liver and kidney, increased vascular leakage, and excessive cytokine production. This hemorrhage-like disease was closely associated with quick viral dissemination and impaired IFN-I innate responses before invasion of JEV into the CNS. Using bone marrow (BM) chimeric models, we found that intrinsic IFN-I signaling in tissue-resident cells in peripheral organs played a major role in inducing the hemorrhage-like disease because IFN-I signal-incompetent recipients of BM cells from IFN-I signal-competent mice showed enhanced viral dissemination, uncontrolled cytokine production, and increased vascular leakage. IFN-I signal-deficient hepatocytes and enterocytes were permissive to JEV replication with impaired induction of antiviral IFN-stimulated genes, and neuron cells derived from both IFN-I signal-competent and -incompetent mice were vulnerable to JEV replication. Finally, circulating CD11b+Ly-6C+ monocytes infiltrated into the distal tissues inoculated by JEV participated in quick viral dissemination to peripheral organs of IFN-I signal-incompetent mice at an early stage. Conclusion An IFN-I signal-dependent model is proposed to demonstrate how CD11b+Ly-6C+ monocytes are involved in restricting the tissue tropism of JEV to the CNS.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1146
Author(s):  
Carla Mavian ◽  
Alberto López-Bueno ◽  
Rocío Martín ◽  
Andreas Nitsche ◽  
Antonio Alcamí

Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.


Sign in / Sign up

Export Citation Format

Share Document