Analytical solutions for the diffusive mass transfer at cylindrical and hollow-cylindrical electrodes with reflective and transmissive boundary conditions

Author(s):  
Tim Tichter ◽  
Dirk Andrae ◽  
Christina Roth
2006 ◽  
Vol 61 (5) ◽  
pp. 1692-1704 ◽  
Author(s):  
Francisco J. Valdés-Parada ◽  
Benoıˆt Goyeau ◽  
J. Alberto Ochoa-Tapia

1978 ◽  
Vol 125 (7) ◽  
pp. 489-525 ◽  
Author(s):  
Ya.E. Geguzin ◽  
Yu.S. Kaganovskii

2004 ◽  
Vol 82 (6) ◽  
pp. 447-458 ◽  
Author(s):  
A A Afify

The effects of radiation and chemical reactions, in the presence of a transverse magnetic field, on free convective flow and mass transfer of an optically dense viscous, incompressible, and electrically conducting fluid past a vertical isothermal cone surface are investigated. The nonlinear boundary-layer equations with the boundary conditions are transferred by a similarity transformation into a system of nonlinear ordinary differential equations with the appropriate boundary conditions. Furthermore, the similarity equations are solved numerically by using a fourth-order Runge–Kutta scheme with the shooting method. Numerical results for the skin-friction coefficient, the local Nusselt number, the local Sherwood number are given; as well, the velocity, temperature, and concentration profiles are presented for a Prandtl number of 0.7, the chemical-reaction parameter, the order of the reaction, the radiation parameter, the Schmidt number, the magnetic parameter, and the surface temperature parameter. PACS No.: 47.70.Fw


Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


Sign in / Sign up

Export Citation Format

Share Document