Analytical solutions of a set of equations of heat and mass transfer for a semi-bounded medium with different boundary conditions

1961 ◽  
Vol 4 ◽  
pp. 71-78 ◽  
Author(s):  
P.V. Tsoi
Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


2012 ◽  
Vol 67 (8-9) ◽  
pp. 517-524 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Zahid Iqbal ◽  
Meraj Mustafa ◽  
Tasawar Hayat

The two-dimensional magnetohydrodynamic (MHD) flow of a Jeffrey fluid is investigated in this paper. The characteristics of heat and mass transfer with chemical reaction have also been analyzed. Convective boundary conditions have been invoked for the thermal boundary layer problem. Exact similarity solutions for flow, temperature, and concentration are derived. Interpretation to the embedded parameters is assigned through graphical results for dimensionless velocity, temperature, concentration, skin friction coefficient, and surface heat and mass transfer. The results indicate an increase in the velocity and the boundary layer thickness by increasing the rheological parameter of the Jeffrey fluid. An intensification in the chemical reaction leads to a thinner concentration boundary layer.


Sign in / Sign up

Export Citation Format

Share Document