The recruitment order of scapular muscles depends on the characteristics of the postural task

2016 ◽  
Vol 31 ◽  
pp. 40-47 ◽  
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Valeska Gatica-Rojas ◽  
Eduardo Martinez-Valdes ◽  
H.B. Xie
2011 ◽  
Vol 23 (3) ◽  
pp. 349-354 ◽  
Author(s):  
C. D. Tokuno ◽  
A. G. Cresswell ◽  
A. Thorstensson ◽  
M. G. Carpenter

2021 ◽  
Vol 121 (5) ◽  
pp. 1379-1388
Author(s):  
A. Mouthon ◽  
J. Ruffieux ◽  
W. Taube

Abstract Purpose Action observation (AO) during motor imagery (MI), so-called AO + MI, has been proposed as a new form of non-physical training, but the neural mechanisms involved remains largely unknown. Therefore, this study aimed to explore whether there were similarities in the modulation of short-interval intracortical inhibition (SICI) during execution and mental simulation of postural tasks, and if there was a difference in modulation of SICI between AO + MI and AO alone. Method 21 young adults (mean ± SD = 24 ± 6.3 years) were asked to either passively observe (AO) or imagine while observing (AO + MI) or physically perform a stable and an unstable standing task, while motor evoked potentials and SICI were assessed in the soleus muscle. Result SICI results showed a modulation by condition (F2,40 = 6.42, p = 0.009) with less SICI in the execution condition compared to the AO + MI (p = 0.009) and AO (p = 0.002) condition. Moreover, switching from the stable to the unstable stance condition reduced significantly SICI (F1,20 = 8.34, p = 0.009) during both, physically performed (− 38.5%; p = 0.03) and mentally simulated balance (− 10%, p < 0.001, AO + MI and AO taken together). Conclusion The data demonstrate that SICI is reduced when switching from a stable to a more unstable standing task during both real task execution and mental simulation. Therefore, our results strengthen and further support the existence of similarities between executed and mentally simulated actions by showing that not only corticospinal excitability is similarly modulated but also SICI. This proposes that the activity of the inhibitory cortical network during mental simulation of balance tasks resembles the one during physical postural task execution.


1993 ◽  
Vol 70 (5) ◽  
pp. 1827-1840 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. The effects of four different synaptic input systems on the recruitment order within a mammalian motoneuron pool were investigated using computer simulations. The synaptic inputs and motor unit properties in the model were based as closely as possible on the available experimental data for the cat medial gastrocnemius pool and muscle. Monte Carlo techniques were employed to add random variance to the motor unit thresholds and forces and to sample the resulting recruitment orders. 2. The effects of the synaptic inputs on recruitment order depended on how they modified the range of recruitment thresholds established by differences in the intrinsic current thresholds of the motoneurons. Application of a uniform synaptic input to the pool (i.e., distributed equally to all motoneurons) resulted in a recruitment sequence that was quite stable even with the addition of large amounts of random variance. With 50% added random variance, the recruitment reversals did not exceed 8%. 3. The simulated monosynaptic input from homonymous Ia afferent fibers generated a twofold expansion of the range of recruitment thresholds beyond that attributed to the differences in the intrinsic current thresholds. The Ia input generated a small reduction in the number of recruitment reversals due to random variance (6% reversals at 50% random variance). The simulated monosynaptic vestibulospinal input generated a twofold compression of the range of recruitment thresholds that exerted a modest increase in the number of recruitment reversals (12% reversals at 50% random variance). 4. In comparison with the modest effects of the two monosynaptic inputs, the simulated oligosynpatic rubrospinal excitatory input exerted a nine-fold compression in the recruitment threshold range that resulted in a recruitment sequence that was highly sensitive to random variance. With 50% added random variance, the sequence became nearly random (40% reversals). 5. Reciprocal Ia inhibition was simulated by a uniform distribution within the pool, but its effects on recruitment order were highly dependent on the distribution of the excitatory input. Reciprocal inhibition exerted only minor effects on recruitment order when combined with the Ia or vestibulospinal inputs. However, when the excitatory drive was supplied by the rubrospinal input, even small amounts of reciprocal inhibition were sufficient to completely reverse the normal recruitment sequence. 6. The simulated monosynaptic Ia input was highly effective in compensating for the disruptive effects of rubrospinal excitation on recruitment order. Even a small Ia bias combined with the rubrospinal excitation was sufficient to halve the effects of random variance and to restore the normal recruitment sequence in the presence of rather large amounts of reciprocal inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 97 (4) ◽  
pp. 2887-2899 ◽  
Author(s):  
Troy M. Herter ◽  
Isaac Kurtzer ◽  
D. William Cabel ◽  
Kirk A. Haunts ◽  
Stephen H. Scott

The present study examined neural activity in the shoulder/elbow region of primary motor cortex (M1) during a whole-limb postural task. By selectively imposing torques at the shoulder, elbow, or both joints we addressed how neurons represent changes in torque at a single joint, multiple joints, and their interrelation. We observed that similar proportions of neurons reflected changes in torque at the shoulder, elbow, and both joints and these neurons were highly intermingled across the cortical surface. Most torque-related neurons were reciprocally excited and inhibited (relative to their unloaded baseline activity) by opposing flexor and extensor torques at a single joint. Although coexcitation/coinhibition was occasionally observed at a single joint, it was rarely observed at both joints. A second analysis assessed the relationship between single-joint and multijoint activity. In contrast to our previous observations, we found that neither linear nor vector summation of single-joint activities could capture the breadth of neural responses to multijoint torques. Finally, we studied the neurons' directional tuning across all the torque conditions, i.e., in joint-torque space. Our population of M1 neurons exhibited a strong bimodal distribution of preferred-torque directions (PTDs) that was biased toward shoulder-extensor/elbow-flexor (whole-limb flexor) and shoulder-flexor/elbow-extensor (whole-limb extensor) torques. Notably, we recently observed a similar bimodal distribution of PTDs in a sample of proximal arm muscles. This observation illustrates the intimate relationship between M1 and the motor periphery.


1999 ◽  
Vol 81 (5) ◽  
pp. 2485-2492 ◽  
Author(s):  
Alan J. Sokoloff ◽  
Sondra G. Siegel ◽  
Timothy C. Cope

Recruitment order among motoneurons from different motor nuclei. The principles by which motoneurons (MNs) innervating different multiple muscles are organized into activity are not known. Here we test the hypothesis that coactivated MNs belonging to different muscles in the decerebrate cat are recruited in accordance with the size principle, i.e., that MNs with slow conduction velocity (CV) are recruited before MNs with higher CV. We studied MN recruitment in two muscle pairs, the lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles, and the MG and posterior biceps femoris (PBF) muscles because these pairs are coactivated reliably in stretch and cutaneous reflexes, respectively. For 29/34 MG-LG pairs of MNs, the MN with lower CV was recruited first either in all trials (548/548 trials for 22 pairs) or in most trials (225/246 trials for 7 pairs), whether the MG or the LG MN in a pair was recruited first. Intertrial variability in the force thresholds of MG and LG MNs recruited by stretch was relatively low (coefficient of variation = 18% on average). Finally, punctate stimulation of the skin over the heel recruited 4/4 pairs of MG-LG MNs in order by CV. By all of these measures, recruitment order is as consistent among MNs from these two ankle muscles as it is for MNs supplying the MG muscle alone. For MG-PBF pairings, the MN with lower CV was recruited first in the majority of trials for 13/24 pairs and in reverse order for 9/24 pairs. The recruitment sequence of coactive MNs supplying the MG and PBF muscles was, therefore, random with respect to axonal conduction velocity and not organized as predicted by the size principle. Taken together, these findings demonstrate for the first time, that the size principle can extend beyond the boundaries of a single muscle but does not coordinate all coactive muscles in a limb.


2017 ◽  
Vol 8 ◽  
Author(s):  
Tehran J. Davis ◽  
Gabriela B. Pinto ◽  
Adam W. Kiefer
Keyword(s):  

1994 ◽  
Vol 79 (2) ◽  
Author(s):  
K.E. Jones ◽  
M. Lyons ◽  
P. Bawa ◽  
R.N. Lemon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document