The influence of contraction type, prior performance of a maximal voluntary contraction and measurement duration on fine-wire EMG amplitude

Author(s):  
Joanna Reeves ◽  
Linda McLean
Author(s):  
Maxime Billot ◽  
Julien Duclay ◽  
Philippe Rigoard ◽  
Romain David ◽  
Alain Martin

Purpose: While resultant maximal voluntary contraction (MVC) is commonly used to assess muscular performance, the simultaneous activation of antagonist muscles could dramatically underestimate the strength of the agonist muscles. While quantification of antagonist torque has been performed in plantar- (PF) and dorsi-flexion (DF) joint in isometric conditions, it has yet to be determined in anisometric (concentric and eccentric) conditions. Methods: The experiment was performed in 9 participants through 2 sessions (reliability). The MVCs in DF and PF were measured in isometric, concentric and eccentric conditions (10°.s-1). Electromyographic (EMG) activities from the soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles were simultaneously recorded. The EMG biofeedback method was used to quantify antagonist torque, where participants were asked to maintain a level of EMG activity, corresponding to antagonist EMG activity and related to the muscle contraction type, according to a visual EMG bio-feedback displayed on a screen. Results: Resultant torque significantly underestimated agonist torque in DF MVC (30-65%) and to a lesser extent in PF MVC (3%). Triceps surae antagonist torque was significantly modified with muscle contraction type, showing higher antagonist torque in isometric (29 Nm) than eccentric (23 Nm, p < 0.001) and concentric (14 Nm, p < 0.001) conditions and resulting in modification of the DF MVC torque-velocity shape. The difference between DF eccentric and concentric MVC was attenuated when considered agonist torque (12%) rather than resultant torque (45%). Conclusion: Estimation of the antagonist torque in isometric or anisometric condition brings new insights to assessment of muscular performance and could result in costly misinterpretation in strength training and/or rehabilitation programs.


2017 ◽  
Vol 118 (6) ◽  
pp. 3242-3251 ◽  
Author(s):  
Brandon Wayne Collins ◽  
Edward W. J. Cadigan ◽  
Lucas Stefanelli ◽  
Duane C. Button

The purpose of this study was to examine the effect of shoulder position on corticospinal excitability (CSE) of the biceps brachii during rest and a 10% maximal voluntary contraction (MVC). Participants ( n = 9) completed two experimental sessions with four conditions: 1) rest, 0° shoulder flexion; 2) 10% MVC, 0° shoulder flexion; 3) rest, 90° shoulder flexion; and 4) 10% MVC, 90° shoulder flexion. Transcranial magnetic, transmastoid electrical, and Erb’s point stimulation were used to induce motor-evoked potentials (MEPs), cervicomedullary MEPs (CMEPs), and maximal muscle compound potentials (Mmax), respectively, in the biceps brachii in each condition. At rest, MEP, CMEP, and Mmax amplitudes increased ( P < 0.01) by 509.7 ± 118.3%, 113.3 ± 28.3%, and 155.1 ± 47.9%, respectively, at 90° compared with 0°. At 10% MVC, MEP amplitudes did not differ ( P = 0.08), but CMEP and Mmax amplitudes increased ( P < 0.05) by 32.3 ± 10.5% and 127.9 ± 26.1%, respectively, at 90° compared with 0°. MEP/Mmax increased ( P < 0.01) by 224.0 ± 99.1% at rest and decreased ( P < 0.05) by 51.3 ± 6.7% at 10% MVC at 90° compared with 0°. CMEP/Mmax was not different ( P = 0.22) at rest but decreased ( P < 0.01) at 10% MVC by 33.6 ± 6.1% at 90° compared with 0°. EMG increased ( P < 0.001) by 8.3 ± 2.0% at rest and decreased ( P < 0.001) by 21.4 ± 4.4% at 10% MVC at 90° compared with 0°. In conclusion, CSE of the biceps brachii was dependent on shoulder position, and the pattern of change was altered within the state in which it was measured. The position-dependent changes in Mmax amplitude, EMG, and CSE itself all contribute to the overall change in CSE of the biceps brachii. NEW & NOTEWORTHY We demonstrate that when the shoulder is placed into two common positions for determining elbow flexor force and activation, corticospinal excitability (CSE) of the biceps brachii is both shoulder position and state dependent. At rest, when the shoulder is flexed from 0° to 90°, supraspinal factors predominantly alter CSE, whereas during a slight contraction, spinal factors predominantly alter CSE. Finally, the normalization techniques frequently used by researchers to investigate CSE may under- and overestimate CSE when shoulder position is changed.


2003 ◽  
Vol 95 (2) ◽  
pp. 829-837 ◽  
Author(s):  
Taija Finni ◽  
John A. Hodgson ◽  
Alex M. Lai ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.


2018 ◽  
Vol 43 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Leonardo Henrique Perinotto Abdalla ◽  
Benedito Sérgio Denadai ◽  
Natália Menezes Bassan ◽  
Camila Coelho Greco

The objective of this study was to test the hypotheses that end-test torque (ET) (expressed as % maximal voluntary contraction; MVC) is higher for plantar flexors (PF) than knee extensors (KE) muscles, whereas impulse above ET (IET) is higher for KE than PF. Thus, we expected that exercise tolerance would be longer for KE than PF only during the exercise performed above ET. After the determination of MVC, 40 men performed two 5-min all-out tests to determine ET and IET. Eleven participants performed a further 4 intermittent isometric tests, to exhaustion, at ET + 5% and ET – 5%, and 1 test for KE at the exercise intensity (%MVC) corresponding to ET + 5% of PF. The IET (7243.2 ± 1942.9 vs. 3357.4 ± 1132.3 N·m·s) and ET (84.4 ± 24.8 vs. 73.9 ± 19.5 N·m) were significantly lower in PF compared with KE. The exercise tolerance was significantly longer for PF (300.7 ± 156.7 s) than KE (156.7 ± 104.3 s) at similar %MVC (∼60%), and significantly shorter for PF (300.7 ± 156.7 s) than KE (697.0 ± 243.7 s) at ET + 5% condition. However, no significant difference was observed for ET – 5% condition (KE = 1030.2 ± 495.4 s vs. PF = 1028.3 ± 514.4 s). Thus, the limit of tolerance during submaximal isometric contractions is influenced by absolute MVC only during exercise performed above ET, which seems to be explained by differences on both ET (expressed as %MVC) and IET values.


1997 ◽  
Vol 22 (6) ◽  
pp. 573-584 ◽  
Author(s):  
Anna Jaskólska ◽  
Artur Jaskólski

Twenty-two young male subjects were tested to estimate the behavior of the early and late phases of relaxation from a 3-s maximal voluntary contraction (MVC) under the influence of fatigue. Less demanding and more demanding protocols of intermittent hand grip exercise were used to fatigue muscle. Before and after fatigue, the early and late relaxation time, maximal relaxation rate, and half-relaxation time were measured. The results showed that during voluntary movement (a) the early phase of relaxation was independent of the mode of intermittent exercise and did not change significantly after fatigue; (b) the late relaxation time and absolute maximal relaxation rate were slower after both protocols, with the changes more pronounced following the more demanding protocol; and (c) the half-relaxation time and relative maximal relaxation rate were changed only in the more demanding protocol. It is concluded that unlike the relaxation following electrical stimulation of isolated muscle, the early phase of relaxation from voluntary contraction appears to be the most resistant to the type of intermittent fatiguing exercise used in the present study, whereas the late relaxation time was the most sensitive to this type of fatigue. Key words: hand grip exercise, late relaxation time, early relaxation time, half-relaxation time


Sign in / Sign up

Export Citation Format

Share Document