scholarly journals Effects of herbivory by the urchin Diadema antillarum on early restoration success of the coral Acropora cervicornis in the central Caribbean

2021 ◽  
Vol 539 ◽  
pp. 151541
Author(s):  
Ivan Cano ◽  
Rita I. Sellares-Blasco ◽  
Jonathan S. Lefcheck ◽  
Maria F. Villalpando ◽  
Aldo Croquer
2018 ◽  
Vol 36 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Kristen E. Dybala ◽  
Andrew Engilis ◽  
John A. Trochet ◽  
Irene E. Engilis ◽  
Melanie L. Truan

Author(s):  
Alexandra S. Thomsen ◽  
Johannes Krause ◽  
Monica Appiano ◽  
Karen E. Tanner ◽  
Charlie Endris ◽  
...  

AbstractSea level rise threatens coastal wetlands worldwide, and restoration projects are implementing strategies that decrease vulnerability to this threat. Vegetation monitoring at sites employing new restoration strategies and determination of appropriate monitoring techniques improve understanding of factors leading to restoration success. In Central California, soil addition raised a degraded marsh plain to a high elevation expected to be resilient to sea level rise over the next century. We monitored plant survival and recruitment using area searches, transect surveys, and unoccupied aircraft systems (UAS) imagery. We used random forest modeling to examine the influence of nine environmental variables on vegetation colonization and conducted targeted soil sampling to examine additional factors contributing to vegetation patterns. Limited pre-construction vegetation survived soil addition, likely due to the sediment thickness (mean = 69 cm) and placement method. After 1 year, about 10% of the initially bare area saw vegetation reestablishment. Elevation and inundation frequency were particularly critical to understanding restoration success, with greatest vegetation cover in high-elevation areas tidally inundated < 0.85% of the time. Soil analysis suggested greater salinity stress and ammonium levels in poorly-vegetated compared to well-vegetated areas at the same elevation. We found that both transect and UAS methods were suitable for monitoring vegetation colonization. Field transects may provide the best approach for tracking early vegetation colonization at moderate-sized sites under resource limitations, but UAS provide a complementary landscape perspective. Beyond elucidating patterns and drivers of marsh dynamics at a newly restored site, our investigation informs monitoring of marsh restoration projects globally.


2021 ◽  
Author(s):  
Mel Galbraith ◽  
David R. Towns ◽  
Barbara Bollard‐Breen ◽  
Edith A. MacDonald

1998 ◽  
Vol 25 (2) ◽  
pp. 122-130 ◽  
Author(s):  
TIMOTHY R. McCLANAHAN ◽  
NYAWIRA A. MUTHIGA

Many coral reefs in the Caribbean, and elsewhere, have undergone changes from hard coral to fleshy algal dominance over the past two decades which has often been interpreted as a localized response to eutrophication and fishing. Here, data on the abundance of hard corals and algae from lagoonal patch reefs distributed throughout a large (260 km2) remote reef atoll located approximately 30 km offshore from the sparsely-populated coast of Belize, Central America, are compared with a study of these patch reefs conducted 25 years previously. Data and observations indicate that these patch reefs have undergone a major change in their ecology associated with a 75% reduction in total hard coral, a 99% loss in the cover of Acropora cervicornis and A. palmata, and a 315% increase in algae, which are mostly erect brown algae species in the genera Lobophora, Dictyota, Turbinaria and Sargassum. Such changes have been reported from other Caribbean reefs during the 1980s, but not on such a remote reef and the present changes may be attributed primarily to both a disease that began killing Acropora in this region in the mid 1980s and a reduction in herbivory. The low level of herbivory may be attributable to the disease-induced loss of the sea urchin Diadema antillarum in 1983, or fishing of herbivorous fishes, but both explanations are speculative. The present density of fisherfolk is low, and their efforts are not targetted at herbivorous fishes, and population densities of D. antillarum 14 years after the mortality are <1 individual per 1000 m2, but there is no comparative data from before the die off. There is, however, no indication that these major changes occurred on the fore reef, because A. palmata is abundant and erect algal abundance is low. We suggest that reported changes in other Caribbean reefs are not necessarily or exclusively influenced by local human factors such as localized intense eutrophication or fishing.


2008 ◽  
Vol 7 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Allison A. Wilkes ◽  
Melissa M. Cook ◽  
Anthony L. DiGirolamo ◽  
John Eme ◽  
Jeff M. Grim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document