Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment

2018 ◽  
Vol 228 ◽  
pp. 117-129 ◽  
Author(s):  
Virginia Cordero-Ravelo ◽  
Julieta Schallenberg-Rodriguez
Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Author(s):  
Shahabaldin Rezania ◽  
Zahra Sotoudehnia Korrani ◽  
Mohammad Ali Gabris ◽  
Jinwoo Cho ◽  
Krsihna Kumar Yadav ◽  
...  

2015 ◽  
Vol 77 ◽  
pp. 521-526 ◽  
Author(s):  
Zahoor Ullah ◽  
Mohamad Azmi Bustam ◽  
Zakaria Man

2015 ◽  
Vol 1113 ◽  
pp. 674-678
Author(s):  
Syarifah Yunus ◽  
Noriah Yusoff ◽  
Muhammad Faiz Fikri Ahmad Khaidzir ◽  
Siti Khadijah Alias ◽  
Freddawati Rashiddy Wong ◽  
...  

The continued using of petroleum energy as a sourced for fuel is widely recognized as unsustainable because of the decreasing of supplies while increasing of the demand. Therefore, it becomes a global agenda to develop a renewable, sustainable and alternative fuel to meets with all the demand. Thus, biodiesel seems to be one of the best choices. In Malaysia, the biodiesel used is from edible vegetable oil sources; palm oil. The uses of palm oil as biodiesel production source have been concern because of the competition with food materials. In this study, various types of biodiesel feedstock are being studied and compared with diesel. The purpose of this comparison is to obtain the optimum engine performance of these different types of biodiesel (edible, non-edible, waste cooking oil) on which are more suitable to be used as alternative fuel. The optimum engine performance effect can be obtains by considering the Brake Power (BP), Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT) and Brake Thermal Efficiency (BTE).


2020 ◽  
Vol 27 (20) ◽  
pp. 25828-25835 ◽  
Author(s):  
Kubendran Devaraj ◽  
Yuvarani Mani ◽  
Salma Aathika Abdur Rawoof ◽  
Amudha Thanarasu ◽  
Anuradha Dhanasekaran ◽  
...  

Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 14-21
Author(s):  
Sri Rizki Putri Primandari ◽  
Andril Arafat ◽  
Harumi Veny

Waste cooking oil has high Free Fatty Acid (FFA). It affected on decreasing a biodiesel production. FFA reduction is one of important processes in biodiesel production from waste cooking oil. Thus, this study aimed to examine the optimum condition in FFA reduction. The process is assisted by using ultrasonic irradiation on acid esterification. Variables of the process are acid concentration, molar ratio of methanol and oil, and irradiation time. Meanwhile temperature irradiation on 45oC is a control variable. Process optimization is conducted by Response Surface Methodology (RSM) with Central Composite Design (CCD). The optimum conditions of response were 7.22:1 (methanol to oil molar ratio), 0.92% wt H2SO4, 26.04 minutes (irradiation time), and 45oC (irradiation temperature). Ultrasonic system reduced FFA significantly compared to conventional method.


Sign in / Sign up

Export Citation Format

Share Document