Two-stage partial nitrification-Anammox process for nitrogen removal from slaughterhouse wastewater: Evaluation of the nitrogen loading rate and microbial community analysis

2021 ◽  
Vol 296 ◽  
pp. 113214
Author(s):  
Natália Carolina Silveira ◽  
Guilherme Henrique Duarte Oliveira ◽  
Márcia Helena Rissato Zamariolli Damianovic ◽  
Eugenio Foresti
2017 ◽  
Author(s):  
S. Suneethi ◽  
Kurian Joseph

Anaerobic Membrane Bioreactor (AnMBR) is an innovative high cell density system having complete biomass retention, high reactor loading and low sludge production and suitable for developing slow growing autotrophic bacterial cultures such as ANAMMOX. The Anaerobic Ammonium Oxidation (ANAMMOX) process is an advanced biological nitrogen removal removes ammonia using nitrite as the electron acceptor without oxygen. The NH4+-N in the landfill leachate that is formed due to the release of nitrogen from municipal solid waste (MSW), when discharged untreated, into the surface water can result in eutrophication, aquatic toxicity and emissions of nitrous oxide (N2O) to atmosphere. Besides, NH4+-N accumulation in landfills poses long term pollution issue with significant interference during post closure thereby requiring its removal prior to ultimate disposal into inland surface waters. The main objective of this study was to investigate the feasibility and treatment efficiency of treating landfill leachate (to check) for removing NH4+-N by adopting ANAMMOX process in AnMBR. The AnMBR was optimized for Nitrogen Loading Rate (NLR) varying from 0.025 to 5 kg NH4+-N/ m3/ d with hydraulic retention time (HRT) ranging from 1 to 3 d. NH4+-N removal efficacy of 85.13 ± 9.67% with the mean nitrogen removal rate (NRR) of 5.54 ± 0.63 kg NH4+-N/ m3/ d was achieved with nitrogen loading rate (NLR) of 6.51 ± 0.20 kg NH4+- N/ m3/ d at 1.5 d HRT. The nitrogen transformation intermediates in the form of hydrazine (N2H4) and hydroxylamine (NH2OH) were 0.008 ± 0.005 mg/L and 0.006 ± 0.001 mg/L, respectively, indicating co-existence of aerobic ammonia oxidizers (AOB) and ANAMMOX. The free ammonia (NH3) and free nitrous acid (HNO2) concentrations were 26.61 ± 16.54 mg/L and (1.66 ± 0.95) x 10-5 mg/L, preventing NO2--N oxidation to NO3--N enabling sustained NH4+- N removal.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 93-98 ◽  
Author(s):  
S. Yoshie ◽  
N. Noda ◽  
T. Miyano ◽  
S. Tsuneda ◽  
A. Hirata ◽  
...  

The metallurgic wastewater generated from the processes of recovering precious metals from industrial wastes contains high concentrations of nitrogen compounds such as ammonia and nitric acid and of salts such as sodium chloride and sodium sulfate. Biological nitrogen removal from this wastewater was attempted by a circulating bioreactor system equipped with an anoxic packed bed and an aerobic fluidized bed. The anoxic packed bed of this system was found to effectively remove nitrite and nitrate from the wastewater by denitrification at a removal ratio of 97%. As a result of denitrification activity tests at various NaCl concentrations, the sludge obtained from the anoxic packed bed exhibited accumulation of nitrite at 5.0 and 8.4% NaCl concentrations, suggesting that the reduction of nitrite is the key step in the denitrification pathway under hypersaline conditions. The microbial community analysis by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments revealed that the community diversity varied in accordance with water temperature, nitrate-loading rate and ionic strength. When particular major DGGE bands were excised, reamplified and directly sequenced, the dominant species in the anoxic packed bed were affiliated with the beta and gamma subclasses of the class Proteobacteria such as Alcaligenes defragrans and Pseudomonas spp., respectively.


2006 ◽  
Vol 53 (12) ◽  
pp. 265-274 ◽  
Author(s):  
A. Dapena-Mora ◽  
J.L. Campos ◽  
A. Mosquera-Corral ◽  
R. Méndez

The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700–1,000 g NH+4-N m−3), organic carbon content (1,000–1,300 g TOC m−3) and salinity up to 8,000–10,000 g NaCl m−3. In the Sharon reactor, approximately 50% of the NH+4-N was oxidised to NO−2-N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m−3· d−1. The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO−2-N concentration was higher than the NH+4-N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340 g NH+4-N m−3 and 440 g NO−2-N m−3, respectively. Based on these results, it seems that the Sharon–Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO−2-N/NH+4-N ratio.


Sign in / Sign up

Export Citation Format

Share Document