Particle-bound organic and elemental carbons for source identification of PM < 0.1 µm from biomass combustion

2022 ◽  
Vol 113 ◽  
pp. 385-393
Author(s):  
Hisam Samae ◽  
Surajit Tekasakul ◽  
Perapong Tekasakul ◽  
Worradorn Phairuang ◽  
Masami Furuuchi ◽  
...  
2021 ◽  
Author(s):  
Christopher Thurman ◽  
Nikolas S. Zawodny ◽  
Nicole A. Pettingill ◽  
Leonard V. Lopes ◽  
James D. Baeder

2012 ◽  
Vol 11 (9) ◽  
pp. 1555-1560 ◽  
Author(s):  
Ionel Pisa ◽  
Gheorghe Lazaroiu ◽  
Corina Radulescu ◽  
Lucian Mihaescu

2019 ◽  
Vol 67 (3) ◽  
pp. 219-227
Author(s):  
Youhong Xiao ◽  
Qingqing Song ◽  
Shaowei Li ◽  
Guoxue Lv ◽  
Zhenlin Ji

In noise source identification based on the inverse boundary element method (IBEM), the boundary vibration velocity is predicted based on the field pressure through a transfer matrix of the vibration velocity and field pressure established on the Helmholtz integral equation. Because the matrix is often ill-posed, it needs to be regularized before reconstructing the vibration velocity. Two regularization methods and two methods of selecting the regularization parameter are investigated through the simulation analysis of a pulsating sphere. The result of transfer matrix regularization is further verified through the reconstruction of the vibration of an aluminum plate. Additionally, to reduce the large errors at some frequencies in the reconstruction result, increasing the number of measuring points is more effective than reducing the distance between the measurement plane and the sound source.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1092
Author(s):  
Hengli Zhang ◽  
Chunjiang Yu ◽  
Zhongyang Luo ◽  
Yu’an Li

The circulating fluidized bed (CFB) boiler is a mainstream technology of biomass combustion generation in China. The high flue gas flow rate and relatively low combustion temperature of CFB make the deposition process different from that of a grate furnace. The dynamic deposition process of biomass ash needs further research, especially in industrial CFB boilers. In this study, a temperature-controlled ash deposit probe was used to sample the deposits in a 12 MW CFB boiler. Through the analysis of multiple deposit samples with different deposition times, the changes in micromorphology and chemical composition of the deposits in each deposition stage can be observed more distinctively. The initial deposits mainly consist of particles smaller than 2 μm, caused by thermophoretic deposition. The second stage is the condensation of alkali metal. Different from the condensation of KCl reported by most previous literatures, KOH is found in deposits in place of KCl. Then, it reacts with SO2, O2 and H2O to form K2SO4. In the third stage, the higher outer layer temperature of deposits reduces the condensation rate of KOH significantly. Meanwhile, the rougher surface of deposits allowed more calcium salts in fly ash to deposit through inertial impact. Thus, the elemental composition of deposits surface shows an overall trend of K decreasing and Ca increasing.


Sign in / Sign up

Export Citation Format

Share Document