Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites

2016 ◽  
Vol 36 (6) ◽  
pp. 1487-1493 ◽  
Author(s):  
Jian He ◽  
Xiaolei Li ◽  
Dong Su ◽  
Huiming Ji ◽  
XiaoJing Wang
2020 ◽  
Vol 10 (4) ◽  
pp. 1314
Author(s):  
Haihua Wu ◽  
Kui Chen ◽  
Yafeng Li ◽  
Chaoqun Ren ◽  
Yu Sun ◽  
...  

The 3D graphite/ceramic composite prototyping parts directly prepared by selective laser sintering (SLS) were porous, which led to poor strength and low thermal conductivity. In order to obtain low thermal conductivity and high strength, its thermal conductivity and compressive strength were adjusted by changing the mixture powder composition and adding post-processing. The result showed that the addition of silicon powder in the mixture powder could significantly improve the compressive strength and thermal conductivity. The addition of expanded graphite was beneficial to the formation of the closed pores in the matrix, which slightly reduced the compressive strength but significantly reduced the thermal conductivity. The 3D graphite/ceramic composite part showed an order of magnitude improvement in compressive strength (from 1.25 to 13.87 MPa) but relatively small change in thermal conductivity (from 1.40 to 2.12 W·m−1K−1) and density (from 0.53 to 1.13 g·cm−3) by post-processing. Reasonable mixture powder composition and post-processing were determined and realized the possibility of fabricating a 3D graphite/ceramic composite part with low thermal conductivity but high compressive strength. Furthermore, it could be used for the repeated casting of steel castings, and through the comparative analysis of casting defects, the prepared graphite/ceramic composite part was expected to replace water glass sand mold.


2006 ◽  
Vol 21 (1) ◽  
pp. 287-292 ◽  
Author(s):  
Michael B. Jakubinek ◽  
Champika J. Samarasekera ◽  
Mary Anne White

There has been much recent interest in heat transport in nanostructures, and alsoin the structure, properties, and growth of biological materials. Here we present measurements of thermal properties of a nanostructured biomineral, ivory. The room-temperature thermal conductivity of ivory is anomalously low in comparison with its constituent components. Low-temperature (2–300 K) measurements ofthermal conductivity and heat capacity reveal a glass-like temperature dependenceof the thermal conductivity and phonon mean free path, consistent with increased phonon-boundary scattering associated with nanostructure. These results suggest that biomineral-like nanocomposite structures could be useful in the design of novel high-strength materials for low thermal conductivity applications.


Author(s):  
Xuan Wang ◽  
Shuya Shan ◽  
Sheldon Q. Shi ◽  
Yaoli Zhang ◽  
Liping Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document