Facile synthesis of MgO–Mg2SiO4 composite ceramics with high strength and low thermal conductivity

Author(s):  
Xinming Ren ◽  
Beiyue Ma ◽  
Gaofeng Fu ◽  
Fan Qian ◽  
Guoqi Liu ◽  
...  
2020 ◽  
Vol 10 (4) ◽  
pp. 1314
Author(s):  
Haihua Wu ◽  
Kui Chen ◽  
Yafeng Li ◽  
Chaoqun Ren ◽  
Yu Sun ◽  
...  

The 3D graphite/ceramic composite prototyping parts directly prepared by selective laser sintering (SLS) were porous, which led to poor strength and low thermal conductivity. In order to obtain low thermal conductivity and high strength, its thermal conductivity and compressive strength were adjusted by changing the mixture powder composition and adding post-processing. The result showed that the addition of silicon powder in the mixture powder could significantly improve the compressive strength and thermal conductivity. The addition of expanded graphite was beneficial to the formation of the closed pores in the matrix, which slightly reduced the compressive strength but significantly reduced the thermal conductivity. The 3D graphite/ceramic composite part showed an order of magnitude improvement in compressive strength (from 1.25 to 13.87 MPa) but relatively small change in thermal conductivity (from 1.40 to 2.12 W·m−1K−1) and density (from 0.53 to 1.13 g·cm−3) by post-processing. Reasonable mixture powder composition and post-processing were determined and realized the possibility of fabricating a 3D graphite/ceramic composite part with low thermal conductivity but high compressive strength. Furthermore, it could be used for the repeated casting of steel castings, and through the comparative analysis of casting defects, the prepared graphite/ceramic composite part was expected to replace water glass sand mold.


Author(s):  
Zetan Liu ◽  
Shiqiang Zhao ◽  
Tian Yang ◽  
Ji Zhou

AbstractIt is possible to improve the machinability of aluminum nitride-hexagonal boron nitride (AlN-h-BN) ceramics while maintaining high strength and high thermal conductivity. The composite ceramics with 0–30 wt% BN as secondary phase were prepared by hot pressed sintering, using yttrium oxide (Y2O3) as sintering aid. The phase composition, density, microstructure, mechanical properties, thermal conductivity, and dielectric properties were investigated. The sintering additives were favorable to purify the grain boundaries and improve densification, reacting with oxide impurities on the surface of raw material powder particles. The optimum BN content improved the flexural strength and fracture toughness of composite ceramics with 475 MPa and 4.86 MPa·m1/2, respectively. With increasing the amount of BN, the thermal conductivity and hardness of composites gradually decreased, but the minimum value of thermal conductivity was still 85.6 W·m−1·K−1. The relative dielectric constant and dielectric loss tangent of the samples ranged from 6.8 to 8.3 and from 2.4 × 10−3 to 6.4 × 10−3, respectively, in 22–26 GHz.


2006 ◽  
Vol 21 (1) ◽  
pp. 287-292 ◽  
Author(s):  
Michael B. Jakubinek ◽  
Champika J. Samarasekera ◽  
Mary Anne White

There has been much recent interest in heat transport in nanostructures, and alsoin the structure, properties, and growth of biological materials. Here we present measurements of thermal properties of a nanostructured biomineral, ivory. The room-temperature thermal conductivity of ivory is anomalously low in comparison with its constituent components. Low-temperature (2–300 K) measurements ofthermal conductivity and heat capacity reveal a glass-like temperature dependenceof the thermal conductivity and phonon mean free path, consistent with increased phonon-boundary scattering associated with nanostructure. These results suggest that biomineral-like nanocomposite structures could be useful in the design of novel high-strength materials for low thermal conductivity applications.


2016 ◽  
Vol 36 (6) ◽  
pp. 1487-1493 ◽  
Author(s):  
Jian He ◽  
Xiaolei Li ◽  
Dong Su ◽  
Huiming Ji ◽  
XiaoJing Wang

Author(s):  
Xuan Wang ◽  
Shuya Shan ◽  
Sheldon Q. Shi ◽  
Yaoli Zhang ◽  
Liping Cai ◽  
...  

Vacuum ◽  
2021 ◽  
Vol 183 ◽  
pp. 109825
Author(s):  
Tan Guo ◽  
Shan Yun ◽  
Yanxing Li ◽  
Zhang Chen ◽  
Chuanxiang Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document