BaAl2Si2O8 polymorphs and a novel reversible transition of BaAlF5 in supercooled oxyfluoride aluminosilicate liquids

Author(s):  
Yuebo Hu ◽  
Xianying Shao ◽  
Zhaoyang Wang ◽  
Xiaolong Xu ◽  
Xiujun Han ◽  
...  
2020 ◽  
Vol 13 (4) ◽  
pp. 1269-1278 ◽  
Author(s):  
Kyojin Ku ◽  
Byunghoon Kim ◽  
Sung-Kyun Jung ◽  
Yue Gong ◽  
Donggun Eum ◽  
...  

We propose a new lithium diffusion model involving coupled lithium and transition metal migration, peculiarly occurring in a lithium-rich layered oxide.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 103
Author(s):  
Guolong Zhang ◽  
Guilin Yang ◽  
Yimin Deng ◽  
Tianjiang Zheng ◽  
Zaojun Fang ◽  
...  

The soft robots actuated by pressure, cables, thermal, electrosorption, combustion and smart materials are usually faced with the problems of poor portability, noise, weak load capacity, small deformation and high driving voltages. In this paper, a novel pneumatic generator for soft robots based on the gas-liquid reversible transition is proposed, which has the advantages of large output force, easy deformation, strong load capacity and high flexibility. The pressure of the pneumatic generator surges or drops flexibly through the reversible transformation between liquid and gas phase, making the soft actuator stretch or contract regularly, without external motors, compressors and pressure-regulating components. The gas-liquid reversible-transition actuation process is modeled to analyze its working mechanism and characteristics. The pressure during the pressurization stage increases linearly with a rate regulated by the heating power and gas volume. It decreases exponentially with the exponential term as a quadratic function of time at the fast depressurization stage, while with the exponential term as a linear function of time at the slow depressurization stage. The drop rate can be adjusted by changing the gas volume and cooling conditions. Furthermore, effectiveness has been verified through experiments of the prototype. The pressure reaches 25 bar with a rising rate of +3.935 bar/s when 5 mL weak electrolyte solution is heated at 800 W, and the maximum depressurization rate in air cooling is –3.796 bar/s. The soft finger actuated by the pneumatic generator can bend with an angular displacement of 67.5°. The proposed pneumatic generator shows great potential to be used for the structure, driving and sensing integration of artificial muscles.


Langmuir ◽  
2010 ◽  
Vol 26 (5) ◽  
pp. 3335-3341 ◽  
Author(s):  
Robert J. Vrancken ◽  
Halim Kusumaatmaja ◽  
Ko Hermans ◽  
An M. Prenen ◽  
Olivier Pierre-Louis ◽  
...  

2009 ◽  
Vol 1788 (9) ◽  
pp. 1722-1730 ◽  
Author(s):  
Wissam Yassine ◽  
Nada Taib ◽  
Silvina Federman ◽  
Alexandra Milochau ◽  
Sabine Castano ◽  
...  

Soft Matter ◽  
2015 ◽  
Vol 11 (10) ◽  
pp. 1871-1876 ◽  
Author(s):  
C. Y. Chu ◽  
X. Jiang ◽  
H. Jinnai ◽  
R. Y. Pei ◽  
W. F. Lin ◽  
...  

A thermally stable ordered bicontinuous double diamond (OBDD) structure in a stereoregular diblock copolymer has been revealed by electron tomography. The structure underwent a thermally reversible transition to double gyroid upon heating, accompanied by a reduction of domain spacing.


Sign in / Sign up

Export Citation Format

Share Document