scholarly journals The Gaussian limit for high-dimensional spherical means

2019 ◽  
Vol 276 (3) ◽  
pp. 815-866
Author(s):  
Amy Peterson ◽  
Ambar N. Sengupta
2020 ◽  
Vol 12 ◽  
Author(s):  
Irfan Alam

The coordinates along any fixed direction(s), of points on the sphere $S^{n-1}(\sqrt{n})$, roughly follow a standard Gaussian distribution as $n$ approaches infinity. We revisit this classical result from a nonstandard analysis perspective, providing a new proof by working with hyperfinite dimensional spheres. We also set up a nonstandard theory for the asymptotic behavior of integrals over varying domains in general. We obtain a new proof of the Riemann--Lebesgue lemma as a by-product of this theory. We finally show that for any function $f \co \mathbb{R}^k \to \mathbb{R}$ with finite Gaussian moment of an order larger than one, its expectation is given by a Loeb integral integral over a hyperfinite dimensional sphere. Some useful inequalities between high-dimensional spherical means of $f$ and its Gaussian mean are obtained in order to complete the above proof.


2011 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Ivan Gavrilyuk ◽  
Boris Khoromskij ◽  
Eugene Tyrtyshnikov

Abstract In the recent years, multidimensional numerical simulations with tensor-structured data formats have been recognized as the basic concept for breaking the "curse of dimensionality". Modern applications of tensor methods include the challenging high-dimensional problems of material sciences, bio-science, stochastic modeling, signal processing, machine learning, and data mining, financial mathematics, etc. The guiding principle of the tensor methods is an approximation of multivariate functions and operators with some separation of variables to keep the computational process in a low parametric tensor-structured manifold. Tensors structures had been wildly used as models of data and discussed in the contexts of differential geometry, mechanics, algebraic geometry, data analysis etc. before tensor methods recently have penetrated into numerical computations. On the one hand, the existing tensor representation formats remained to be of a limited use in many high-dimensional problems because of lack of sufficiently reliable and fast software. On the other hand, for moderate dimensional problems (e.g. in "ab-initio" quantum chemistry) as well as for selected model problems of very high dimensions, the application of traditional canonical and Tucker formats in combination with the ideas of multilevel methods has led to the new efficient algorithms. The recent progress in tensor numerical methods is achieved with new representation formats now known as "tensor-train representations" and "hierarchical Tucker representations". Note that the formats themselves could have been picked up earlier in the literature on the modeling of quantum systems. Until 2009 they lived in a closed world of those quantum theory publications and never trespassed the territory of numerical analysis. The tremendous progress during the very recent years shows the new tensor tools in various applications and in the development of these tools and study of their approximation and algebraic properties. This special issue treats tensors as a base for efficient numerical algorithms in various modern applications and with special emphases on the new representation formats.


Sign in / Sign up

Export Citation Format

Share Document