scholarly journals Chronic nitrite treatment activates adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase pathway in human aortic endothelial cells

2021 ◽  
Vol 80 ◽  
pp. 104447
Author(s):  
Yang Liu ◽  
Kevin D. Croft ◽  
Jonathan M. Hodgson ◽  
Trevor Mori ◽  
Natalie C. Ward
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xu-Ping Wang ◽  
Zhen-Ying Cheng ◽  
Katrina L. Schmid

GABABreceptors regulate the intracellular Ca2+concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]iis not known. The purpose of this study was to investigate the expression of GABABreceptors, a subclass of receptors to the inhibitory neurotransmitterγ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]iand endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1and GABAB2in cultured HAECs. The effects of GABABreceptors on [Ca2+]iin cultured HAECs were demonstrated using fluo-3. The influence of GABABreceptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1and GABAB2mRNA and protein were expressed in cultured HAECs, and the GABAB1and GABAB2proteins were colocated in the cell membrane and cytoplasm. One hundredμM baclofen caused a transient increase of [Ca2+]iand eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABABreceptor antagonists CGP46381 and CGP55845. GABABreceptors are expressed in HAECs and regulate the [Ca2+]iand eNOS translocation. Cultures of HAECs may be a usefulin vitromodel for the study of GABABreceptors and vascular biology.


2011 ◽  
Vol 286 (22) ◽  
pp. 20100-20108 ◽  
Author(s):  
Zhihong Xiao ◽  
Tingting Wang ◽  
Honghua Qin ◽  
Chao Huang ◽  
Youmei Feng ◽  
...  

Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca2+ and protein phosphorylation, but the interrelationship between intracellular Ca2+ mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca2+ release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca2+ release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca2+ release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca2+ and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca2+ release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca2+/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca2+ release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca2+ release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca2+ is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca2+-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.


Sign in / Sign up

Export Citation Format

Share Document