Wake flow pattern modified by small control cylinders at low Reynolds number

2007 ◽  
Vol 23 (6) ◽  
pp. 938-956 ◽  
Author(s):  
C.-H. Kuo ◽  
L.-C. Chiou ◽  
C.-C. Chen
Author(s):  
Huihe Qiu ◽  
Peng Zhang

The development of MEMS requires deliberate designs for controlling fluids in the low Reynolds number regime. Arranging surface charges in rectangular channels to obtain in-plane or out-of-plane vortices have been studied by previous researchers. However, previous surface modification techniques require different signs of zeta potentials from the other wall surfaces which made it difficult in selecting and coating microchannels. Previously, the opposite polarities are usually adjusted by changing the pH value of the solution with acid chemicals in other researches which made the solution complicated and difficult to simulate a real application. Meanwhile the acid chemicals may also destroy the coating. It is convenient to use same polarity patches if a vortex flow can also be generated. However, it is not clear if the patterned surface charges have the same polarity of zeta potentials as the other walls, what kind flow pattern will be generated and what mechanism behind the flow pattern. Furthermore, the cross-section of previously studied microchannels is usually limited to a rectangular shape. Therefore, the surface charge patterns are usually in 2D since the sidewalls of the rectangular microchannels are difficult to be patterned. However, a channel with round cross-section has better leak-proof performance of the membrane valve. Furthermore, a round channel is also advantageous in mimicking the human vein when a vascular structure is needed in tissue scaffolding, the round microfluidic channel is considered as a good candidate for an artificial capillary vessel. It is anticipated that there will be no stagnation occurs at the corner edges, which occurs at the corners of a rectangular channel, for a round microchannel owing to the perfectly symmetrical velocity profile. This is important when the microfluidic chip is subjected to a separation process such as liquid chromatography. In this paper, effects of patterned surface modification on 3D vortex flows generation in a micro capillary tube under very low Reynolds number have been investigated. Microfabrication technology was successfully employed to pattern surface charges on inner surfaces of round capillary tubes, which form non-uniform zeta-potentials. This technique extends the heterogeneous surfaces from flat surface to curved surface. 3D vortices are visualized and measured at the vicinity of tube walls when an electric field is applied across the surfaces utilizing micro resolution PIV. It demonstrated that 3D vortices can also be generated by the patterned surface charges with a same polarity. Experimental results have been compared with the numerical simulations using CFD-ACE+.


Author(s):  
Masaki Fuchiwaki ◽  
Kazuhiro Tanaka

An unsteady flow in a low Reynolds number region attracts attention in recent years. Various experiments/numerical analyses have been conducted in wake flow fields of objects with unsteady motions in low Reynolds number regions have been studied and reported recently. The authors clarified vortical structures in a wake of a rigid airfoil (NACA0010) with pitching, heaving and an unsteady motion with these motions combined quantitatively. The purpose of this study is to evaluate quantitatively the vortex flow formed in the wake of a flat airfoil whose edge deforms elastically by a PIV measurement by giving a heaving motion to the flat plate in a low Reynolds number region. A clear thrust producing vortex street equivalent to the airfoil shape can be formed by giving elasticity to the latter part of a rigid flat airfoil. vortices forming the thrust producing vortex street is extremely large and their vorticity is equivalent to that of NACA0010. In the mainstream of a vortex street forming a propulsion power generating vortex street, the vortex interval in the vertical direction is comparatively large and an interference of the vortices rolling up from the pressure and suction sides is small therefore the accelerating flow induced by these vortices becomes as large as the mainstream. The dynamic thrust acting on the elastic flat plate is greater than that of NACA0010. Because vortices with high vorticity roll up and these vortices are aligned with a comparatively large vortex interval in the vertical direction therefore a large accelerating flow is induced in the wake.


2006 ◽  
Vol 2006.2 (0) ◽  
pp. 377-378
Author(s):  
Hisaya SUGIYAMA ◽  
Akira MATSUMOTO ◽  
Naoki SEKIYA

2016 ◽  
Author(s):  
Meng-Zhao Guan ◽  
Rajeev K. Jaiman ◽  
Chang-Wei Kang ◽  
Teck-Bin Arthur Lim

This paper presents a set of numerical simulations of flow-induced vibrations (FIV) and coupled wake flow behind two identical square columns in a side-by-side configuration. To observe the four regimes as a function of different gap ratios, the computational results of the configuration at low Reynolds number Re=ρfUDμf in stationary condition are firstly compared with existing experimental data of moderate Reynolds number. We next investigate the configuration of elastically mounted square columns, which are free to oscillate in both streamwise and transverse directions. The simulations are performed by the Petrov-Galerkin finite-element method and Arbitrary Lagrangian-Eulerian technique to account for the fluid mesh motion. The four regimes of stationary side-by-side configuration follow the same trend of the experimental data conducted at moderate Reynolds number, while the ranges of each regime differ due to the turbulent wake properties. For the freely vibrating condition, all the simulations are computed at low Reynolds number (Re = 200), mass ratio equal to 10m*=Mmf and reduced velocity in the range of Ur ∈ [1,50] where Ur=UfND and in free-damping condition ζ = C2KM = 0. The four regimes in vibrating condition are investigated as a function of gap ratios g* = g/D, which is the ratio of spacing between the inner column surfaces to the diameter of the column. The effects of reduced velocity on the force variations, the vibration amplitudes and the vorticity contours are analyzed systematically to understand the underlying FIV physics of side-by-side columns in the four regimes. Finally, we present a FIV study of the full semi-submersible model at moderate Reynolds number Re = 20,000 which can be considered as the application of side-by-side configuration.


Sign in / Sign up

Export Citation Format

Share Document