scholarly journals Investigation of the three-dimensional turbulent near-wake structure past a flat plate by tomographic PIV at high Reynolds number

2014 ◽  
Vol 47 ◽  
pp. 21-30 ◽  
Author(s):  
E. Deri ◽  
M. Braza ◽  
E. Cid ◽  
S. Cazin ◽  
D. Michaelis ◽  
...  
2017 ◽  
Author(s):  
Galih Bangga ◽  
Andri Ashfahani ◽  
Erik Sugianto ◽  
Devy Sa’adiyah ◽  
Tiara Putri ◽  
...  

Author(s):  
Xinliang Tian ◽  
Muk Chen Ong ◽  
Jianmin Yang ◽  
Dag Myrhaug ◽  
Gang Chen

Plate components are often found in offshore and marine structures, such as heave damping plates in spar platform and bilge keels in ships. Two-dimensional (2D) and three-dimensional (3D) numerical simulations are performed to investigate the 3D effects of the flow normal to a flat plate at a high Reynolds number (Re = 1:5×105, based on the height of the plate and the free stream velocity). The ratio of the plate thickness to the plate height is 0.02. The 2D simulations are carried out by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the k-ω Shear Stress Transport (SST) turbulence model, while the 3D simulations are carried out with the large-eddy simulation (LES) method. The hydrodynamic results (such as time-averaged drag coefficient, Strouhal number and mean recirculation length) are compared with the published experimental data. The near-wake flow structures are also discussed. The 3D simulation results are in good agreement with the published experimental data; however, the 2D simulations show a poor comparison with the experimental data. This shows that the 3D effects are important for the high Reynolds number flow normal to a flat plate.


2014 ◽  
Vol 543-547 ◽  
pp. 434-440
Author(s):  
Qiang Liu ◽  
Wei Xie ◽  
Wen Yang Duan ◽  
Chang Hong Hu

Based on fully structured grids parallel numerical simulations of flow around a cylinder under different Reynolds number are carried out. Two-dimensional and three-dimensional models are established at the same time under specific Reynolds number, and further analyze of three-dimensional flow characteristics as well as the generated influence to overall physical quantities are presented. In order to explore efficient high Reynolds number turbulence models, a comparative research of the LES model without wall functions and the Spalart-Allmaras turbulence model is carried out. In order to improve the computational efficiency, a domain decomposition parallel computing strategy is used, and a calculation strategy that results of coarse grid was assigned to fine grid as initial field value by 3D linear interpolation is presented. Simulation results show that: Drag coefficient and Strouhal number have very good consistency with the experimental data, which verifies the correctness of the calculation method; Even if at low Reynolds number (200≤Re≤300), using a three-dimensional model is still necessary; While in the high Reynolds number stage, compared to LES model without wall functions, Spalart-Allmaras model is more applicable and more efficient.


2008 ◽  
Vol 617 ◽  
pp. 355-379 ◽  
Author(s):  
VAGESH D. NARASIMHAMURTHY ◽  
HELGE I. ANDERSSON ◽  
BJØRNAR PETTERSEN

Direct numerical simulation (DNS) of vortex shedding behind a tapered plate with the taper ratio 20 placed normal to the inflow has been performed. The Reynolds numbers based on the uniform inflow velocity and the width of the plate at the wide and narrow ends were 1000 and 250, respectively. For the first time ever cellular vortex shedding was observed behind a tapered plate in a numerical experiment (DNS). Multiple cells of constant shedding frequency were found along the span of the plate. This is in contrast to apparent lack of cellular vortex shedding found in the high-Reynolds-number experiments by Gaster & Ponsford (Aero. J., vol. 88, 1984, p. 206). However, the present DNS data is in good qualitative agreement with similar high-Reynolds-number experimental data produced by Castro & Watson (Exp. Fluids, vol. 37, 2004, p. 159). It was observed that a tapered plate creates longer formation length coupled with higher base pressure as compared to non-tapered (i.e. uniform) plates. The three-dimensional recirculation bubble was nearly conical in shape. A significant base pressure reduction towards the narrow end of the plate, which results in a corresponding increase in Strouhal number, was noticed. This observation is consistent with the experimental data of Castro & Rogers (Exp. Fluids, vol. 33, 2002, p. 66). Pressure-driven spanwise secondary motion was observed, both in the front stagnation zone and also in the wake, thereby reflecting the three-dimensionality induced by the tapering.


Sign in / Sign up

Export Citation Format

Share Document