plate height
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 24)

H-INDEX

26
(FIVE YEARS 3)

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1896
Author(s):  
Bolin Hu ◽  
Xiaoqiang Zhang ◽  
Zhaofeng Wang ◽  
Zixian Wang ◽  
Yuanfan Ji

This paper uses computational fluid dynamics (CFD) to simulate flow field distribution inside an electrochemical descaling reactor in three dimensions. First, the reactor flow field was obtained by steady-state simulation, and the grid independence was verified. Then, the steady state of the flow field was judged to ensure the accuracy of the simulation results. Transient simulations were performed on the basis of steady-state simulations, and residence time distribution (RTD) curves were obtained by a pulse-tracing method. The effects of plate height and plate spacing on reactor hydraulic characteristics (flow state and backmixing) were investigated using RTD curves, and the results showed that increasing the plate height and decreasing the plate spacing could make the flow more similar to the plug flow and reduce the degree of backmixing in the reactor. The flow field details provided by CFD were used to analyze the reactor flow field and were further verified to obtain the distribution patterns of dead and short circuit zones. Meanwhile, information regarding pressure drops was extracted for different working conditions (490, 560, and 630 mm for pole plate height and 172.6, 129.45, and 103.56 mm for pole plate spacing), and the results showed that increasing the pole plate height and decreasing the pole plate spacing led to an increased drop in pressure. In this case, a larger pressure drop means higher energy consumption. However, increasing the pole plate height had a smaller effect on energy consumption than decreasing the pole plate spacing.


Author(s):  
Mojtaba Labibzadeh ◽  
Anis Salehnia ◽  
Khandaker M. A. Hossain ◽  
Deng-Hu Jing

An RC shear wall (wall1), a composite shear wall composed of a single external steel plate connected to a concrete panel (wall2), a composite shear wall constructed from two external steel plates connected to an internal concrete panel (wall3) and finally a composite shear wall fabricated with a single internal steel plate embedded within a concrete panel (wall4) are considered in this study and their behavior are assessed and compared under the effect of an in-plane cyclic load. Variation of the three functions include shear load capacity, energy absorption and shear stiffness of the walls are evaluated numerically using the ABAQUS finite element software. The performance of numerical models is validated against to the experimental results. The effects of four parameters consisting of compressive strength of concrete, yield strength of steel plate, height-to-length ratio of the wall and the thickness of the steel plate are investigated on the above-mentioned functions. Obtained results show that the wall4 has the best performance among all four types of shear walls. For instance, the energy absorption capacity of the wall4 is approximately two times greater than that of wall1 and wall2.


2021 ◽  
Author(s):  
Moon-Jun Sohn ◽  
Haenghwa Lee ◽  
Byung-Jou Lee ◽  
Hae-Won Koo ◽  
Kwang Hyeon Kim ◽  
...  

Abstract Background: In malalignment syndrome, the spino-pelvic alignment correction with foot orthotics can be applied only to a standing position in the coronal plane. Considering the fact that the average time Koreans spend sitting in a chair is 7.5 hours per day, studies on spino-pelvic correction in sitting position is needed. The purpose of this study is to investigate the pressure changes and radiographic assessment of spino-pelvic alignment using a chair equipped with a height-adjustable seat-plate.Methods: Experiments were conducted on 30 research participants. The inclusion criteria for the participants were as follows: The volunteers of nonstructural malignment syndrome with shoulder height differences (SHDs) or iliac flea height differences (ICHDs) greater than 5 mm in radiographic images excluding participants with structural deformity. All participants were subjected to measure buttocks interface pressure while seated using a smart chair in three consecutive steps: (1) on initial seated, (2) on balancing seated, and then (3) on 1hr balancing seated. Radiographically, the five spino-pelvic parameters such as SHD, ICHD, LLD, POA, and coronal imbalance were analyzed to investigate the effect of pelvic imbalance compensation on spino-pelvic alignment.Results: Pelvic imbalance was compensated with seat plate height adjustment in average of 3.6 ± 1.8 mm, so that the pressure discrepancy improvement between buttocks from 36.4 ± 32.3 on initial seated to 15.7 ± 20.3 on balancing, 12.7 ± 10.9 on 1hr balancing seated (Ω, p=0.008). The radiographic changes before and after pelvic imbalance compensation demonstrated a statistically significant improvements of spino-pelvic parameters on sitting and standing: at the average value of -0.9 to -0.8 and 9.5 to 2.5, SHD and ICHD, respectively (mm, p=0.005, 0.037) and -3.0 to -1.0, 1.8 to 0.8, and 0.8 to 0.1, SHD, ICHD, and LLD, respectively (mm, p=0.005, 0.016, 0.033).Conclusions: Spino-pelvic malalignment can be improved by individually customized pelvic compensation using balanced seat plate height adjustments under the real-time pressure sensing and monitoring on the buttocks while seated.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Efstathios Konstantinidis

The cross-flow over a surface-mounted elastic plate and its vibratory response are studied as a fundamental two-dimensional configuration to gain physical insight into the interaction of viscous flow with flexible structures. The governing equations are numerically solved on a deforming mesh using an arbitrary Lagrangian-Eulerian finite-element method. The turbulent flow is resolved using the unsteady Reynolds-averaged Navier–Stokes equations at a Reynolds number of 2.5×104 based on the plate height. The material properties of the plate are selected so that the structural frequency is close to the frequency of vortex shedding from the free edge of a rigid plate, which is studied initially as the reference case. The results show that the plate tip oscillates back and forth in response to unsteady fluid loading at twice the frequency of vortex shedding, which is attributable to the sequential formation of a primary vortex from the free edge and a secondary vortex near the base of the plate. The effects of the plate elasticity and density on the structural response are considered, and results are compiled in terms of the reduced velocity U* and the density ratio ρ*. The standard deviation of tip displacement increases with reduced velocity in the range 7.1⩽U*⩽18.4, irrespective of whether the elasticity or the density of the plate is varied. However, the average deflection of the plate in the streamwise direction displays different scaling with U* and ρ*, but scales almost linearly with the Cauchy number ∼U*2/ρ*. Interestingly, the synchronization between plate motion and vortex shedding ceases at U*=18.4, and the excitation mechanism in the latter case resembles flutter instability, rather than vortex-induced vibration found at lower U*.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang ◽  
...  

The new method of rock breaking based on the combination of circular sawblade and conical pick was proposed to improve the effectiveness of hard rock breaking. The numerical simulation method was applied to research the conical pick cutting arc rock plate by ANSYS/LS-DYNA. The conical pick cutting arc rock plate numerical simulation model was established to research the influence of arc rock plate structural parameters and cutting parameters on cracks formation and propagation of the arc rock plate and the cutting force in the process of conical pick cutting arc rock plate. The amount of cracks is positively correlated with arc rock plate thickness, the cutting speed, and distance of cutting point to arc rock plate central axis and negatively correlated with the cutting angle. The mean peak cutting force is positively correlated with the thickness of arc rock plate and the distance of cutting point to arc rock plate central axis; however, it is negatively correlated with the arc rock plate height and width and cutting angle of conical pick. The simulation results can be used to predict the conical pick work performance with various cutting parameters and structural parameters.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2625
Author(s):  
Ok-Kyung Kim ◽  
Jeong moon Yun ◽  
Minhee Lee ◽  
Soo-Jeung Park ◽  
Dakyung Kim ◽  
...  

The aim of this study was to investigate the effects of administration of a mixture of Humulus japonicus (MH) on longitudinal bone growth in normal Sprague Dawley (SD) rats. We measured the femur and tibia length, growth plate area, proliferation of chondrocytes, and expression of insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP-3), and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) phosphorylation after dietary administration of MH in SD rats for four weeks. The nose–tail length gain and length of femur and tibia increased significantly in the group that received MH for a period of four weeks. We performed H&E staining and Bromodeoxyuridine/5-Bromo-2′-Deoxyuridine (BrdU) staining to examine the effect of dietary administration of MH on the growth plate and the proliferation of chondrocytes and found that MH stimulated the proliferation of chondrocytes and contributed to increased growth plate height during the process of longitudinal bone growth. In addition, serum levels of IGF-1 and IGFBP-3 and expression of IGF-1 and IGFBP-3 mRNAs in the liver and bone were increased, and phosphorylation of JAK2/STAT5 in the liver was increased in the MH groups. Based on these results, we suggest that the effect of MH on longitudinal bone growth is mediated by increased JAK2/STAT5-induced IGF-1 production.


2020 ◽  
Vol 12 (8) ◽  
pp. 3482
Author(s):  
Yehui Zhu ◽  
Liquan Xie ◽  
Tsung-Chow Su

Underwater pipelines are vital to the oil industry. Extending the service life of these pipelines is a key issue in improving the sustainability of oil transportation. A geotextile mattress with floating plate (GMFP) is a novel and sustainable countermeasure for scour and erosion control and is herein introduced to protect a partially buried pipeline from local scour in steady currents. A series of experiments was designed to verify the protection capabilities of the GMFP and investigate its parametric effects on protection. The average seepage hydraulic gradient under the pipeline was adopted to depict the protection effects of the GMFP, and was calculated with the pore pressure readings under the pipeline. The test results show that the GMFP is capable of protecting a pipeline from the onset of local scour in a unidirectional current. The average seepage hydraulic gradient below the pipeline decreases remarkably after a GMFP is installed. The average hydraulic gradient shows a descending trend with increased sloping angle α when 0.64 < sinα < 0.77. The hydraulic gradient hits a nadir at sinα = 0.77 and climbs with the increasing sloping angle when sinα > 0.82. The hydraulic gradient ascends when the bottom opening ratio δ increases from 0.167 to 0.231, due to the decreased intensity of the bottom vortex. The hydraulic gradient drops with a rising plate height, except for a fluctuation at Hp = 0.12 m. An approximate negative correlation is found between the obstruction height of the floating plate and the average hydraulic gradient under the pipeline. This could be partially attributed to the extension and amplification of the bottom vortex on the leeside of the pipeline due to the increased plate obstruction height.


2020 ◽  
Vol 23 (10) ◽  
pp. 2220-2236
Author(s):  
Haolei Wang ◽  
Tao Sun ◽  
Chen Tang ◽  
Jiejun Wang

This article proposes a new kind of continuous composite beam that consists of steel box-girder and ultra-high-performance concrete waffle slab. The ultra-high-performance concrete helps increase the ultimate capacity and span of structure while reducing the risk of cracking that occurs with ordinary concrete. In order to investigate the mechanical properties of this new type of composite structure, two scaled specimens were designed and tested. One was a steel–ultra-high-performance concrete continuous composite beam, whereas the other, as a control specimen, was a prestressed steel-concrete continuous composite beam. The test results indicate that the bending capacity of steel–ultra-high-performance concrete continuous composite beam is 1.2 times that of steel-concrete continuous composite beam; the cracking strength of steel–ultra-high-performance concrete continuous composite beam is larger than 20 MPa, much higher than the conventional one; the crack development pattern of steel–ultra-high-performance concrete continuous composite beam has its own characteristics, and the cracks appeared in ultra-high-performance concrete slab dominated by micro-cracks with smaller length are numerous and intensive. A finite element model was developed to predict the behavior of steel–ultra-high-performance concrete continuous composite beam. Comparing the numerical and experimental results indicates that, generally, the numerical model can simulate the structural behavior of steel–ultra-high-performance concrete continuous composite beam reasonably. Based on the numerical model, a series of parameter analyses were performed, which indicate that the strength grade of steel, web, and bottom plate thickness play an important role in improving the bending capacity of steel–ultra-high-performance concrete continuous composite beam; the axial tensile strength of ultra-high-performance concrete, rib, and top plate height of ultra-high-performance concrete slab can enhance the bending capacity to a certain extent.


Cartilage ◽  
2020 ◽  
pp. 194760351990080 ◽  
Author(s):  
Kimberly Wilson ◽  
Yu Usami ◽  
Danielle Hogarth ◽  
Amanda L. Scheiber ◽  
Hongying Tian ◽  
...  

Objective The purposes of this study are to evaluate which growth plate parameters are associated with bone growth in mice and to compare the mouse results with those in humans. Design The sagittal sections of the proximal growth plate of the mouse tibia from neonate to young adult stages were subjected to histomorphometric and functional analyses. The radiographic images of tibias of human patients until puberty were analyzed to obtain the tibia length and the proximal growth plate height. It was found that a linear correlation best modeled the relationship between the growth plate variables with the tibia growth rate and length. Results In mice, total height, resting zone height, combined height of the proliferation and prehypertrophic zones, proliferation activity, and the total width of tibia growth plate showed high linear correlation with tibia bone length and bone growth rate, but the hypertrophic zone height and the growth plate area did not. In both mice and humans, the total growth plate width of tibia was found to have the strongest correlation with tibia length and growth rate. Conclusions The results validated that growth plate total height, the height of the resting zone and cell proliferation activity are appropriate parameters to evaluate the balance between growth plate activity and bone growth in mice, consistent with previous reports. The study also provided a new growth plate parameter candidate, growth plate width for growth plate activity evaluation in both mouse and human tibia bone.


Sign in / Sign up

Export Citation Format

Share Document