Two-dimensional water entry and exit of a body whose shape varies in time

2013 ◽  
Vol 40 ◽  
pp. 317-336 ◽  
Author(s):  
A. Tassin ◽  
D.J. Piro ◽  
A.A. Korobkin ◽  
K.J. Maki ◽  
M.J. Cooker
2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Andrea L. Facci ◽  
Stefano Ubertini

The prediction of impulsive loads deriving from the sudden impact of a solid body on the water surface is of fundamental importance for a wide range of engineering applications. The study of hull-slamming phenomena largely relies on laboratory scale experimental investigations and on simplified analytical models. The aim of this paper is to quantitatively assess the interplay between the relevant nondimensional parameters for the water entry of a two-dimensional body, evidencing the similitude conditions that allow the transition from scaled experiments to real size applications. This assessment is performed through the numerical study of the hydrodynamics induced by the water impact of a two-dimensional wedge. The fluid flow is considered incompressible. First of all numerical simulations are validated by comparison with experimental data from the literature and with the Wagner seminal theory. Afterwards, a thorough computational study is performed by systematically varying all the relevant parameters, such as the nondimensional entry velocity and acceleration. We conclude by evidencing some design prescriptions that should be adopted in order to facilitate the transition of laboratory scale experiments to real scale applications.


Author(s):  
Sergei K. Buruchenko ◽  
Ricardo B. Canelas

Water entry and exit of a body is an important topic in naval hydrodynamics as these phenomena play relevant roles both for offshore structures and vessels. Water entry and exit events are intrinsically transient and represent intense topological changes in the system, with large amounts of momentum exchange between phases. At its onset, they can be characterized by highly localized, both in space and time, loads on the vessel, influencing both the local structural safety of the structure and the global loads acting on it. The DualSPHysics code is proposed as a numerical tool for the simulation of fluid and floating object interaction. The numerical model is based on a Smoothed Particle Hydrodynamics discretization of the Navier-Stokes equations and Newton’s equations for rigid body dynamics. This paper examines the water impact, fluid motions, and movement of objects in the conventional case studies of object entry and exit from still water. A two dimensional body drop analysis was carried out demonstrating acceptable agreement of the movement of the object with published experimental and numerical results. The velocity field of the fluid is also captured and analyzed. Simulations for water entry and exit of a buoyant and neutral density cylinder compares well with previous experimental, numerical, and empirical studies in penetration, free surface evolution and object kinematics. These results provide a good foundation to evaluate the accuracy and stability of the DualSPHysics implementation for modeling the interaction between free surface flow and free moving floating objects.


2011 ◽  
Vol 138-139 ◽  
pp. 376-381 ◽  
Author(s):  
Yun Bo Li ◽  
Ya Jun Li ◽  
Yan Wang

The water entry of two-dimensional body with flow separation is simulated based on potential theory and boundary element method. The double point model and four-order Runge-Kutta method and jet-cut model and free surface smooth technique and regrinding technique are used to assure the stability and accuracy of the numerical result. A flow separation model is introduced to simulate the water entry of two-dimensional body with knuckle. The free surface elevation and pressure distribution of wedge with knuckle are predicted and compared with other theory result. Good agreement between numerical result and other theory result is indicated that the numerical method is stability and effective.


2020 ◽  
Author(s):  
Saeed Hosseinzadeh ◽  
Mohammad Izadi ◽  
Kristjan Tabri

Abstract This paper examines the hydrodynamic problem of a two-dimensional symmetric and asymmetric wedge water entry through freefall motion. The gravity effect on the flow is considered and because of precise simulation close to the real phenomenon, the oblique slamming is analyzed. The defined problem is numerically studied using SIMPLE and HRIC schemes and by implementing an overset mesh approach. In order to evaluate the accuracy of the numerical model, the present results are compared and validated with previous experimental studies and showed good agreement. The results are presented and compared for each symmetry and asymmetry in different deadrise angles, drop heights and heel angles. Based on a comparison of the measured vertical acceleration of the experimental wedge data, it is determined that the proposed numerical method has relatively good accuracy in predicting the slamming phenomenon and wedge response. The influence of viscous regime on water entry simulations is investigated, in according to results, effect of viscosity is negligible. Results show that the heel angle dramatically affects the wedge dynamics, pile-up evolution, and pressure distribution. These results suggest evidence for a complex interaction between geometric parameters on the water entry of rigid wedges, which could finally develop our understanding of planing vessels operating in real sea conditions.


Sign in / Sign up

Export Citation Format

Share Document