Hydroelastic analysis of Very Large Floating Structures in variable bathymetry regions by multi-modal expansions and FEM

2021 ◽  
Vol 102 ◽  
pp. 103236
Author(s):  
Angeliki E. Karperaki ◽  
Kostas A. Belibassakis
Author(s):  
H. Suzuki ◽  
H. R. Riggs ◽  
M. Fujikubo ◽  
T. A. Shugar ◽  
H. Seto ◽  
...  

Very Large Floating Structure (VLFS) is a unique concept of ocean structures primary because of their unprecedented length, displacement cost and associated hydroelastic response. International Ship and Offshore Structures Congress (ISSC) had paid attention to the emerging novel technology and launched Special Task Committee to investigate the state of the art in the technology. This paper summarizes the activities of the committee. A brief overview of VLFS is given first for readers new to the subject. History, application and uniqueness with regard to engineering implication are presented. The Mobile Offshore Base (MOB) and Mega-Float, which are typical VLFS projects that have been investigated in detail and are aimed to be realized in the near future, are introduced. Uniqueness of VLFS, such as differences in behavior of VLFS from conventional ships and offshore structures, are described. The engineering challenges associated with behavior, design procedure, environment, and the structural analysis of VLFS are introduced. A comparative study of hydroelastic analysis tools that were independently developed for MOB and Mega-Float is made in terms of accuracy of global behavior. The effect of structural modeling on the accuracy of stress analysis is also discussed. VLFS entails innovative design methods and procedure. Development of design criteria and design procedures are described and application of reliability-based approaches are documented and discussed.


Author(s):  
Chao Tian ◽  
Xinyun Ni ◽  
Jun Ding ◽  
Peng Yang ◽  
Yousheng Wu

In order to explore the fishery, oil and gas, and tourism resources in the ocean, Very Large Floating Structures (VLFS) can be deployed near islands and reefs as a logistic base with various functions such as a floating harbor, accommodation, fishery processing, oil and gas exploration, environment surveillance, airplane landing and taking off, etc. However, in addition to the complicated hydroelastic coupling effects between the hydrodynamic loads and structural dynamic responses, when tackling the hydroelastic problems of floating structures deployed near islands and reefs, several other environmental effects and numerical techniques should be taken into account: 1) The influences of the non-uniform incident waves (multi-directions, different wave frequencies); 2) Complex seabed profile and its impact on the incident waves; 3) Nonlinear second order wave exciting forces in the complex mooring system, shallow water and coral reef geological conditions; 4) Parallel computing technology and fast solving methods for the large scale linear equations, accounting for the influence of dramatic increase of number of meshes to the computation efforts and efficiency. In the present paper the theoretical investigation on the hydroelastic responses of VLFS deployed near islands and reefs has been presented. In addition, based on the pulsating source Green function, the high performance parallel fast computing techniques and other numerical methods, in solving large scale linear equations, have been introduced in the three-dimensional hydroelastic analysis package THAFTS. The motions, wave loads, distortions and stresses can be calculated using the present theoretical model and the results can be used in the design and safety assessment of VLFS.


Sign in / Sign up

Export Citation Format

Share Document