directional wave spectrum
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 158 (A2) ◽  
Author(s):  
M A Hinostroza ◽  
C Guedes Soares

A parametric estimation of the directional wave spectrum based on ship motions is presented. The estimation of the sea- state parameters is essential to have an updated data base of the main characteristics of the sea-state, which are useful for several applications on open-sea such as offshore platforms installations and safe ship navigation. The sea-state parameters at a fixed position can be obtained using a traditional waverider buoy. The analogy between the ship and the buoy is clear thus, it is possible to obtain an estimate of the wave spectrum at the location of an advancing ship by processing its wave-induced responses similarly to the traditional waverider buoy. In the parametric procedure the estimated wave spectrum is a-priori assumed to be composed of one parameterized spectrum or by the summation of several parameterized spectra, e.g. the generalized JONSWAP spectrum. Genetic algorithms are applied to found the best estimation of wave parameters. The wave estimation method is validated against numerical simulations and full scale tests in a patrol ship.


Author(s):  
Felipe Lopes de Souza ◽  
Eduardo Aoun Tannuri ◽  
Pedro Cardozo de Mello ◽  
Guilherme Franzini ◽  
Jordi Mas-Soler ◽  
...  

The measurement of the directional wave spectrum in oceans has been done by different approaches, mainly wave-buoys, satellite imagery and radar technologies; these methods, however, present some inherent drawbacks, e.g., difficult maintenance, low resolution around areas of interest and high cost. In order to overcome those problems, recent works proposed a motion-based estimation procedure using the vessel as a wave sensor; nevertheless, this strategy suffers from low-estimation capabilities of the spectral energy coming from periods lower than the cutoff period of the systems, which are important for the drift effect predictions. This work studies the usage of wave-probes installed on the hull of a moored vessel to enhance the estimation capabilities of the motion-based strategy, using a high-order estimation method based on Bayesian statistics. First, the measurements from the wave-probes are incorporated to the dynamic system of the vessel as new degrees-of-freedom (DOF); thus, the Bayesian method can be expanded without additional reasoning. Second, the proposal is validated by experiments conducted in a wave-basin with a scale model, concluding that the approach is able to improve not only the estimation of spectra with low peak period but also the estimation in the entire range of expected spectra. Finally, some drawbacks are discussed, as the effect of the nonlinear roll motion, which must be taken in account when calculating the wave-probe response; and the poor mean-direction estimation capability in some particular wave directions and low peak periods.


Author(s):  
Felipe Lopes de Souza ◽  
Eduardo Aoun Tannuri ◽  
Pedro Cardozo de Mello ◽  
Guilherme Franzini ◽  
Jordi Mas-Soler ◽  
...  

The measurement of the directional wave spectrum in oceans has been done by different approaches, mainly wave-buoys, satellite imagery and radar technologies; these methods, however, present some inherent drawbacks, e.g., difficult maintenance, low-resolution around areas of interest and high-cost. In order to overcome those problems, recent works in the area proposed a motion-based estimation procedure using the vessel, or the floating facility, as a wave sensor, what was called wave-buoy analogy. Despite of solving the issues, the solution is still incomplete, since it suffers from low estimation capabilities of the spectral energy below the cut-off period of the systems, around eight seconds, a frequency range that is responsible for the drift effects, that are critical for operation planning and dynamic positioning. This work studies the usage of wave-probes installed on the hull of a moored vessel to enhance the estimation capabilities of the motion-based strategy, using a high-order estimation method based on Bayesian statistics. The proposal is founded on the asymptotical response of the oceanic systems facing low period waves, which starts to behave like a wall, reflecting all the incoming energy, i.e., the worst the motion-based estimation is, the better the wave-elevation based estimation should be. Firstly, the measurements from the wave-probes are incorporated to the dynamic system of the vessel as new degrees-of-freedom, using a linear model extension, thus the Bayesian method can be expanded without additional reasoning. Secondly, the linear model hypothesis and the possible improvements are validated by experiments conducted in a wave-basin with a scale model of a moored FPSO-VLCC, concluding that the approach is able to improve not only the estimation of spectra with low peak period, but also the estimation in the entire range of expected spectra, mainly the significant height and the peak period properties. Lastly, some drawbacks are discussed, as the effect of the non-linear roll movement, which must be taken in account when calculating the wave-probe response; and the poor mean-direction estimation capability in some particular wave directions and low peak periods, in which even the vessel motions allied with the wave-probe response are not able to provide the proper direction discrimination.


Author(s):  
Masaki YOKOTA ◽  
Keiske ODA ◽  
Ryusuke SAITO ◽  
Noriaki HASHIMOTO ◽  
Masao MITSUI ◽  
...  

2015 ◽  
Vol 32 (11) ◽  
pp. 2147-2159 ◽  
Author(s):  
Zezong Chen ◽  
Longgang Zhang ◽  
Chen Zhao ◽  
Xi Chen ◽  
Jianbo Zhong

AbstractWind sea and swell representing different weather conditions generally coexist in both open waters and coastal areas, which results in bimodal or multipeaked features in directional wave spectrum. Because they make wave parameters such as significant wave height and mean wave period of the mixed sea state less meaningful, the processes of separation and identification of wind sea and swell are crucial. Consistent wind sea and swell results can be obtained by a commonly used method based on wave age (WA) with the directional wave spectrum and wind velocity. However, the subjective dependence of wave age threshold selection and the required wind information restrict the application of this method. In this study, a practical method based on the overshoot phenomenon (OP) in wind-generated waves is proposed to extract wind sea and swell from the directional wave spectrum without any other meteorology information. Directional wave spectra derived from an S-band Doppler radar deployed on the coast of the South China Sea have been utilized as the datasets to investigate the performance of both methods. The proposed OP method is then validated by comparing it with the WA method and the verifying results are presented.


Sign in / Sign up

Export Citation Format

Share Document