Distributed fault-tolerant consensus tracking control for multiple Lagrangian systems with preset error bound constraints

Author(s):  
Yunbiao Jiang ◽  
Zhongxin Liu ◽  
Zengqiang Chen
Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 33
Author(s):  
Ziyi Liu ◽  
Hadi Jahanshahi ◽  
Christos Volos ◽  
Stelios Bekiros ◽  
Shaobo He ◽  
...  

Over the last years, distributed consensus tracking control has received a lot of attention due to its benefits, such as low operational costs, high resilience, flexible scalability, and so on. However, control methods that do not consider faults in actuators and control agents are impractical in most systems. There is no research in the literature investigating the consensus tracking of supply chain networks subject to disturbances and faults in control input. Motivated by this, the current research studies the fault-tolerant, finite-time, and smooth consensus tracking problems for chaotic multi-agent supply chain networks subject to disturbances, uncertainties, and faults in actuators. The chaotic attractors of a supply chain network are shown, and its corresponding multi-agent system is presented. A new control technique is then proposed, which is suitable for distributed consensus tracking of nonlinear uncertain systems. In the proposed scheme, the effects of faults in control actuators and robustness against unknown time-varying disturbances are taken into account. The proposed technique also uses a finite-time super-twisting algorithm that avoids chattering in the system’s response and control input. Lastly, the multi-agent system is considered in the presence of disturbances and actuator faults, and the proposed scheme’s excellent performance is displayed through numerical simulations.


Author(s):  
Dinesh D Dhadekar ◽  
S E Talole

In this article, position and attitude tracking control of the quadrotor subject to complex nonlinearities, input couplings, aerodynamic uncertainties, and external disturbances coupled with faults in multiple motors is investigated. A robustified nonlinear dynamic inversion (NDI)-based fault-tolerant control (FTC) scheme is proposed for the purpose. The proposed scheme is not only robust against aforementioned nonlinearities, disturbances, and uncertainties but also tolerant to unexpected occurrence of faults in multiple motors. The proposed scheme employs uncertainty and disturbance estimator (UDE) technique to robustify the NDI-based controller by providing estimate of the lumped disturbance, thereby enabling rejection of the same. In addition, the UDE also plays the role of fault detection and identification module. The effectiveness and benefits of the proposed design are confirmed through 6-DOF simulations and experimentation on a 3-DOF Hover platform.


Sign in / Sign up

Export Citation Format

Share Document