A critical review on N-modified TiO2 limits to treat chemical and biological contaminants in water. Evidence that enhanced visible light absorption does not lead to higher degradation rates under whole solar light

2022 ◽  
Vol 425 ◽  
pp. 127979
Author(s):  
Julián A. Rengifo-Herrera ◽  
Paula Osorio-Vargas ◽  
C. Pulgarin
2019 ◽  
Vol 3 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Sanjay Singh Negi

Improved visible light absorption by meso-TiO2−X materials compared to TiO2 for enhanced solar light harvesting.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2297 ◽  
Author(s):  
Rokhsareh Akbarzadeh ◽  
Anvar Asadi ◽  
Peter Ozaveshe Oviroh ◽  
Tien-Chien Jen

A novel enhanced visible light absorption BiOCl/AgCl/BiVO4 heterojunction of photocatalysts could be obtained through a one-pot hydrothermal method used with two different pH solutions. There was a relationship between synthesis pH and the ratio of BiOCl to BiVO4 in XRD planes and their photocatalytic activity. The visible light photocatalytic performances of photocatalysts were evaluated via degradation of diclofenac (DCFF) as a pharmaceutical model pollutant. Furthermore, kinetic studies showed that DCF degradation followed pseudo-first-order kinetics. The photocatalytic degradation rates of BiOCl/AgCl/BiVO4 synthesized at pH = 1.2 and pH = 4 for DCF were 72% and 47%, respectively, showing the higher activity of the photocatalyst which was synthesized at a lower pH value. It was concluded that the excellent photocatalytic activity of BiOCl/AgCl/BiVO4 is due to the enhanced visible light absorption formation of a heterostructure, which increased the lifetime of photo-produced electron–hole pairs by creating a heterojunction. The influence of pH during synthesis on photocatalytic activity in order to create different phases was investigated. This work suggests that the BiOCl/AgCl/BiVO4 p-n heterojunction is more active when the ratio of BiOCl to BiVO4 is smaller, and this could be achieved simply by the pH adjustment. This is a promising method of modifying the photocatalyst for the purpose of pollutant degradation under visible light illumination.


Author(s):  
David Maria Tobaldi ◽  
Luc Lajaunie ◽  
ana caetano ◽  
nejc rozman ◽  
Maria Paula Seabra ◽  
...  

<div>Titanium dioxide is by far the most utilised semiconductor material for photocatalytic applications. Still, it is transparent to visible-light. Recently, it has been proved that a type-II band alignment for the rutile−anatase mixture would improve its visible-light absorption.</div><div>In this research paper we thoroughly characterised the real crystalline and amorphous phases of synthesised titanias – thermally treated at different temperatures to get distinct ratios of anatase-rutile-amorphous fraction – as well as that of three commercially available photocatalytic nano-TiO2. </div><div>The structural characterisation was done via advanced X-ray diffraction method, namely the Rietveld-RIR method, to attain a full quantitative phase analysis of the specimens. The microstructure was also investigated via an advanced X-ray method, the whole powder pattern modelling. These methods were validated combining advanced aberration-corrected scanning transmission microscopy and high-resolution electron energy-loss spectroscopy. The photocatalytic activity was assessed in the liquid- and gas-solid phase (employing rhodamine B and 4-chlorophenol, and isopropanol, respectively, as the organic substances to degrade) using a light source irradiating exclusively in the visible-range.</div><div>Optical spectroscopy showed that even a small fraction of rutile (2 wt%) is able to shift to lower energies the apparent optical band gap of an anatase-rutile mixed phase. But is this enough to attain a real photocatalytic activity promoted by merely visible-light?</div><div>We tried to give a reply to that question.</div><div>Photocatalytic activity results in the liquid-solid phase showed that a high surface hydroxylation led to specimen with superior visible light-induced catalytic activity (i.e. dye and ligand-to-metal charge transfer complexes sensitisation effects). That is: not photocatalysis <i>sensu-strictu</i>.</div><div>On the other hand, the gas-solid phase results showed that a higher amount of the rutile fraction (around 10 wt%), together with less recombination of the charge carriers, were more effective for an actual photocatalytic oxidation of isopropanol.</div>


2019 ◽  
Vol 2 (10) ◽  
pp. 7518-7526 ◽  
Author(s):  
Hanggara Sudrajat ◽  
Mitsunori Kitta ◽  
Nobuyuki Ichikuni ◽  
Hiroshi Onishi

Author(s):  
Xin Zou ◽  
Xueyang Han ◽  
Chengxiong Wang ◽  
Yunkun Zhao ◽  
Chun Du ◽  
...  

Ta3N5 is regarded as a promising candidate material with adequate visible light absorption and band structure for photoelectrochemical water splitting. However, the performance of Ta3N5 is severely limited by the...


Sign in / Sign up

Export Citation Format

Share Document