Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability

2022 ◽  
pp. 128204
Author(s):  
Zelin Wu ◽  
Zhaokun Xiong ◽  
Rui Liu ◽  
Chuanshu He ◽  
Yang Liu ◽  
...  
2019 ◽  
Author(s):  
Nan An ◽  
Diana Ainembabazi ◽  
Kavya Samudrala ◽  
Christopher Reid ◽  
Kare Wilson ◽  
...  

<p>Here we report the synthesis, characterization and activity of tunable Pd-doped hydrotalcites (Pd-HTs) for the decarbonylation of furfural, hydroxymethylfurfural (HMF), aromatic and aliphatic aldehydes under microwave conditions. The decarbonylation activity reported is a notable improvement over prior heterogeneous catalysts for this process. Furfural decarbonylation is optimized in a benign solvent compatible with biomass processing - ethanol, under relatively mild conditions and short reaction times. HMF selectively affords excellent yields of furfuryl alcohol with no humin formation, but longer reaction can also afford furan via tandem alcohol dehydrogenation and decarbonylation. Yields of substituted benzaldehydes are related to calculated Mulliken charge of the carbonyl carbon. The activity and selectivity differences can be traced to loading-dependent differences in Pd speciation on the catalysts. Poisoning studies show inverse correlation between Pd loading and metal leaching: Pd-HTs with lowest Pd loading, which consist of highly dispersed and oxidized Pd species, operate heterogeneously with negligible metal leaching. Recycling experiments are consistent with this trend, offering potential for further optimization to improve robustness.</p>


2014 ◽  
Vol 34 (2) ◽  
pp. 391-396
Author(s):  
Xiangsheng XU ◽  
Ao’ang CHEN ◽  
Li ZHOU ◽  
Xiaoqing LI ◽  
Huizi GU ◽  
...  
Keyword(s):  

1986 ◽  
Vol 51 (12) ◽  
pp. 2751-2759 ◽  
Author(s):  
Jindřich Poláček ◽  
Helena Antropiusová ◽  
Lidmila Petrusová ◽  
Karel Mach

The C6H6.Ti(II)(AlBr4)2 (Ib) catalyst deactivates during the butadiene cyclotrimerization to give a solid containing all titanium (mostly as TiBr3) and a mixture of AlBr3 and RAlBr2 compounds dissolved in benzene. The residual cationic catalytic activity of the deactivated Ib system is due to presence of AlBr3. In contrast to TiCl3, the deactivated Ib system and the model system TiBr3 + AlBr3 are not activated by the addition of EtAlCl2 in the presence of butadiene: the highly active benzenetitanium(II) system is re-constituted only after reduction of TiBr3 with Et3Al followed by the addition of EtAlCl2. The addition of Et2AlBr to Ib accelerates the deactivation of the system. Deactivation products of this system contain mainly Ti(II) species which forms benzenetitanium(II) catalytic system after addition of EtAlCl2. All the EtAlCl2 reactivated systems produce (Z, E, E)-1,5,9-cyclododecatriene with high catalytic stability and considerable selectivity (>90%). This behaviour points to the catalysis by benzenetitanium(II) chloroalane complexes containing only low amount of bromine atoms and ethyl groups.


Author(s):  
Peijia Wang ◽  
Jiajie Huang ◽  
Jing Zhang ◽  
Liang Wang ◽  
Peiheng Sun ◽  
...  

Hierarchically core–branched iron cobalt selenide arrays coated with N-doped carbon shell were designed and synthesized on carbon cloth, showing prominent electrochemical performance both in half-cell and full cell sodium ion batteries.


2021 ◽  
Author(s):  
Xue-Zhi Song ◽  
He Wang ◽  
Zhuoxi Li ◽  
Yu-Lan Meng ◽  
Zhenquan Tan ◽  
...  

Co@CNTs@DSCNCs with a double-shelled hollow structure exhibit an enhanced HER activity compared to a series of Co@CNTs@PC catalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 826
Author(s):  
Qiong Wu ◽  
Chenghua Xu ◽  
Yuhao Zheng ◽  
Jie Liu ◽  
Zhiyong Deng ◽  
...  

NiCuMoLaAl mixed oxide catalysts are prepared and applied in the steam reforming of chloroform-ethyl acetate (CHCl3-EA) mixture to syngas in the present work. The pre-introduction of Cl- ions using chloride salts as modifiers aims to improve the chlorine poisoning resistance. Catalytic tests show that KCl modification is obviously advantageous to increase the catalytic life. The destruction of catalyst structure induced by in situ produced HCl and carbon deposits that occurred on acidic sites are two key points for deactivation of reforming catalysts. The presence of Cl− ions gives rise to the formation of an Ni-Cu alloy, which exhibits a synergetic effect on catalyzing reforming along with metallic Ni crystals formed from excess nickel species, and giving an excellent catalytic stability. Less CHCl3 and more steam can also increase the catalytic stable time of KCl-modified NiCuMoLaAl reforming catalyst.


Rare Metals ◽  
2021 ◽  
Author(s):  
Zi-Zhong Chen ◽  
Jia-Gang Hou ◽  
Ji Zhou ◽  
Peng Huang ◽  
Hai-Qing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document