Modeling water temperature effect in diatom ( Stephanodiscus hantzschii ) prediction in eutrophic rivers using a 2D contaminant transport model

2018 ◽  
Vol 19 ◽  
pp. 41-55 ◽  
Author(s):  
Jun Song Kim ◽  
Il Won Seo ◽  
Siwan Lyu ◽  
Sunghyun Kwak
1999 ◽  
Author(s):  
Bohdan Cybyk ◽  
Jay Boris ◽  
Theodore Young, Jr. ◽  
Charles Lind ◽  
Alexandra Landsberg

2007 ◽  
Vol 12 (3) ◽  
pp. 329-343 ◽  
Author(s):  
A. J. Chamkha

A one-dimensional advective-dispersive contaminant transport model with scale-dependent dispersion coefficient in the presence of a nonlinear chemical reaction of arbitrary order is considered. Two types of variations of the dispersion coefficient with the downstream distance are considered. The first type assumes that the dispersivity increases as a polynomial function with distance while the other assumes an exponentiallyincreasing function. Since the general problem is nonlinear and possesses no analytical solutions, a numerical solution based on an efficient implicit iterative tri-diagonal finitedifference method is obtained. Comparisons with previously published analytical and numerical solutions for special cases of the main transport equation are performed and found to be in excellent agreement. A parametric study of all physical parameters is conducted and the results are presented graphically to illustrate interesting features of the solutions. It is found that the chemical reaction order and rate coefficient have significant effects on the contaminant concentration profiles. Furthermore, the scale-dependent polynomial type dispersion coefficient is predicted to obtain significant changes in the contaminant concentration at all dimensionless time stages compared with the constant dispersion case. However, relatively smaller changes in the concentration level are predicted for the exponentially-increasing dispersion coefficient.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


Sign in / Sign up

Export Citation Format

Share Document