Intraoperative Single-Site Sarcomere Length Measurement Accurately Reflects Whole-Muscle Sarcomere Length in the Rabbit

2007 ◽  
Vol 32 (5) ◽  
pp. 612-617 ◽  
Author(s):  
Mitsuhiko Takahashi ◽  
Samuel R. Ward ◽  
Richard L. Lieber
2017 ◽  
Vol 112 (4) ◽  
pp. 805-812 ◽  
Author(s):  
Kevin W. Young ◽  
Bill P.-P. Kuo ◽  
Shawn M. O’Connor ◽  
Stojan Radic ◽  
Richard L. Lieber

2019 ◽  
Vol 3 (2) ◽  
Author(s):  
L. G. Johnson ◽  
M. D. Schulte ◽  
E. A. Zuber ◽  
E. M. Steadham ◽  
C. A. Fedler ◽  
...  

ObjectivesPostmortem aging of fresh pork loins improves tenderness through protein degradation. Sarcomere length (SL) of postmortem muscle can vary between animals, and this could impact access and efficacy of proteinases to degrade proteins within, but not outside of the myofibril. The relationship between SL and protein degradation is not well documented in pork. Therefore, the objective of this experiment was to compare protein degradation of troponin-T with desmin and SL in aged pork loins over 21d.Materials and MethodsPaired sides of fresh pork loins (n = 20) were collected 1 d postmortem. Criteria for inclusion in the study were a pH between 5.85 and 6.10 and a visual color score (NPPC) between 3 and 4. Eight loin chops (2.54 cm) containing only the longissimus muscle were fabricated. Two chops from each pair of loins were aged for 1, 8, 14 or 21 d and immediately evaluated. After aging, chops were cooked to 68°C and Warner-Bratzler shear force (WBSF) was measured. Whole muscle proteins were solubilized from samples at each aging period (10mM sodium phosphate, pH 7.0 and 2% wt/vol sodium dodecyl sulfate). Abundance of degraded troponin-T (30 kDa) and intact desmin (55 kDa) in the whole muscle sample was determined by immunoblotting. Abundance of troponin-T degradation product and intact desmin was normalized by a reference sample on each gel. A helium-neon laser diffraction method was used to determine SL (total of 36 SL per sample were recorded). The distance between primary diffraction bands was used to calculate SL. Correlation coefficients were determined using PROC CORR of SAS 9.4 and significance determined by P < 0.05.ResultsOverall and across all days aging, SL was not strongly correlated to intact desmin (r = –0.198; P = 0.07) or troponin-T degradation (r = 0.236; P = 0.04). Troponin-T degradation was not detected at d1 in any samples but overall and across all days was highly correlated with WBSF (r = –0.671; P < 0.01)). Intact desmin was correlated with WBSF (r = 0.661; P < 0.01). Across all samples, SL was correlated with WBSF (r = –0.445; P < 0.01). Intact desmin and troponin-T degradation were correlated (r = –0.818; P < 0.01).Correlations within day of aging revealed that protein degradation was not significantly correlated with WBSF at d 1. In contrast, troponin-T degradation was correlated (P < 0.01) with WBSF at 8, 14, 21 d postmortem (r = –0.733, –0.641, and –0.772, respectively). Similarly, intact desmin was correlated (P < 0.01) with WBSF at 8, 14, and 21 d postmortem (r = 0.447, 0.553, and 0.824, respectively). SL was correlated (P < 0.01) with WBSF at each d postmortem (r = –0.445, –0.562, –0.714, and –0.512, respectively).ConclusionThe correlation results suggest that SL is consistently correlated with WBSF across aging periods and is more strongly correlated with WBSF early postmortem than protein degradation. After aging, troponin-T degradation and intact desmin demonstrate greater correlations with WBSF than SL. Finally, SL correlation to troponin-T and desmin were generally similar and not strong, suggesting that SL does not affect the efficacy of proteinases to degrade proteins within the myofibril differently than extra-myofibrillar proteins.


1980 ◽  
Vol 58 (4) ◽  
pp. 392-395
Author(s):  
Bernard H. Bressler

The sarcomere length – isometric tension diagram has been determined for the toad Bufo bufo sartorius using a laser diffraction technique to measure the sarcomere width. The sarcomere width at l0 was found to be 2.37 μm. At lengths shorter than l0 this whole muscle exhibits a steeper decline in tension than single fibres. This discrepancy in the shape of the tension–length diagram between single frog fibres and whole toad sartorii may be due to a difference in the magnitude of the internal force which appears only at short lengths.


Author(s):  
Lomas S. Persad ◽  
Benjamin I. Binder-Markey ◽  
Alexander Y. Shin ◽  
Kenton R. Kaufman ◽  
Richard L. Lieber

We measured the passive mechanical properties of intact, living human gracilis muscles (n=11 individuals, 1 female, age: 33±12years, mass: 89±23kg, height: 177±8cm). Measurements were performed in patients undergoing surgery for free functioning myocutaneous tissue transfer of the gracilis muscle to restore elbow flexion after brachial plexus injury. Whole muscle force of the gracilis tendon was measured in four joint configurations (JC1-JC4) with a buckle force transducer placed at the distal tendon. Sarcomere length was also measured by biopsy from the proximal gracilis muscle. After the muscle was removed a three-dimensional volumetric reconstruction of the muscle was created via photogrammetry. Muscle length from JC1 to JC4 increased by 3.3±1.0 cm, 7.7±1.2 cm, 10.5±1.3 cm and 13.4±1.2 cm respectively, corresponding to 15%, 34%, 46% and 59% muscle fiber strain respectively. Muscle volume and an average optimal fiber length of 23.1±0.7 cm yielded an average muscle physiological cross-sectional area of 6.8±0.7 cm2 which is approximately three times that measured previously from cadaveric specimens. Absolute passive tension increased from 0.90±0.21 N in JC1 to 16.50±2.64 N in JC4. As expected, sarcomere length also increased from 3.24±0.08 µm at JC1 to 3.63±0.07 µm at JC4, which are on the descending limb of the human sarcomere length-tension curve. Peak passive muscle stress was 27.8±5.5 kPa in JC4 and muscle modulus ranged from 44.8 MPa in JC1 to 125.7 MPa in JC4. Compared to other mammalian species, human muscle passive mechanical properties are more similar to rodent muscle than rabbit muscle. These data provide direct measurements of whole human muscle passive mechanical properties that can be used in modeling studies and for understanding comparative passive mechanical properties among mammalian muscles.


2016 ◽  
Vol 219 (10) ◽  
pp. 1432-1436 ◽  
Author(s):  
Shawn M. O'Connor ◽  
Elton J. Cheng ◽  
Kevin W. Young ◽  
Samuel R. Ward ◽  
Richard L. Lieber

Author(s):  
G.E. Adomian ◽  
L. Chuck ◽  
W.W. Pannley

Sonnenblick, et al, have shown that sarcomeres change length as a function of cardiac muscle length along the ascending portion of the length-tension curve. This allows the contractile force to be expressed as a direct function of sarcomere length. Below L max, muscle length is directly related to sarcomere length at lengths greater than 85% of optimum. However, beyond the apex of the tension-length curve, i.e. L max, a disparity occurs between cardiac muscle length and sarcomere length. To account for this disproportionate increase in muscle length as sarcomere length remains relatively stable, the concept of fiber slippage was suggested as a plausible explanation. These observations have subsequently been extended to the intact ventricle.


Sign in / Sign up

Export Citation Format

Share Document