Reply to comments provided by Z. Şen on “Takagi–Sugeno fuzzy system for modeling stage-discharge relationship” by A.K. Lohani, N.K. Goel and K.K.S. Bhatia

2007 ◽  
Vol 337 (1-2) ◽  
pp. 244-247 ◽  
Author(s):  
A.K. Lohani ◽  
N.K. Goel ◽  
K.K.S. Bhatia
Keyword(s):  
2016 ◽  
Vol 64 (6) ◽  
Author(s):  
Salman Zaidi ◽  
Andreas Kroll

AbstractA novel interval-data based Takagi-Sugeno fuzzy system is proposed to identify uncertain nonlinear dynamic systems by endowing the classical TS fuzzy system with probability theory and symbolic data analysis. Such systems have variability in their outputs, that is they produce varying responses each time when the same stimuli is applied to them under the same condition. Interval data is generated by repeating the identification experiment multiple times and applying the probabilistic techniques to get soft bounds of output. The interval data is then directly used in the TS fuzzy modelling, giving rise to interval antecedent and consequent parameters. This method does not require any specific assumption on the probability distribution of the random variable that models the uncertainty. The developed procedure is demonstrated for a pneumatic drive system.


2018 ◽  
Vol 15 (1) ◽  
pp. 139-162 ◽  
Author(s):  
Miodrag Petkovic ◽  
Ilija Basicevic ◽  
Dragan Kukolj ◽  
Miroslav Popovic

The detection of distributed denial of service (DDoS) attacks based on internet traffic anomalies is a method which is general in nature and can detect unknown or zero-day attacks. One of the statistical characteristics used for this purpose is network traffic entropy: a sudden change in entropy may indicate a DDoS attack. However, this approach often gives false positives, and this is the main obstacle to its wider deployment within network security equipment. In this paper, we propose a new, two-step method for detection of DDoS attacks. This method combines the approaches of network traffic entropy and the Takagi-Sugeno-Kang fuzzy system. In the first step, the detection process calculates the entropy distribution of the network packets. In the second step, the Takagi-Sugeno-Kang fuzzy system (TSK-FS) method is applied to these entropy values. The performance of the TSK-FS method is compared with that of the typically used approach, in which cumulative sum (CUSUM) change point detection is applied directly to entropy time series. The results show that the TSK-FS DDoS detector reaches enhanced sensitivity and robustness in the detection process, achieving a high true-positive detection rate and a very low false-positive rate. As it is based on entropy, this combined method retains its generality and is capable of detecting various types of attack.


Author(s):  
Felipe Fernández ◽  
Julio Gutiérrez ◽  
Gracián Triviño ◽  
Juan Carlos Crespo

2005 ◽  
Vol 38 (4-5) ◽  
pp. 447-457 ◽  
Author(s):  
Zhuoyong Zhang ◽  
Yanfeng Tang ◽  
Guoqiang Fan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document