A two-step fusion framework for quality improvement of a remotely sensed soil moisture product: A case study for the ECV product over the Tibetan Plateau

2020 ◽  
Vol 587 ◽  
pp. 124993 ◽  
Author(s):  
Yaokui Cui ◽  
Xuebin Yang ◽  
Xi Chen ◽  
Wenjie Fan ◽  
Chao Zeng ◽  
...  
2020 ◽  
Author(s):  
Yaokui Cui ◽  
Chao Zeng ◽  
Jie Zhou ◽  
Xi Chen

<p><strong>Abstract</strong>:</p><p>Surface soil moisture plays an important role in the exchange of water and energy between the land surface and the atmosphere, and critical to climate change study. The Tibetan Plateau (TP), known as “The third pole of the world” and “Asia’s water towers”, exerts huge influences on and sensitive to global climates. Long time series of and spatio-temporal continuum soil moisture is helpful to understand the role of TP in this situation. In this study, a dataset of 14-year (2002–2015) Spatio-temporal continuum remotely sensed soil moisture of the TP at 0.25° resolution is obtained, combining MODIS optical products and ESA (European Space Agency) ECV (Essential Climate Variable) combined soil moisture products based on General Regression Neural Network (GRNN). The validation of the dataset shows that the soil moisture is well reconstructed with R<sup>2</sup> larger than 0.65, and RMSE less than 0.08 cm<sup>3</sup> cm<sup>-3</sup> and Bias less than 0.07 cm<sup>3</sup> cm<sup>-3 </sup>at 0.25° and 1° spatial scale, compared with the in-situ measurements in the central of TP. And then, spatial and temporal characteristics and trend of SM over TP were analyzed based on this dataset.</p><p><strong>Keywords: </strong>Soil moisture; Remote Sensing; Dataset; GRNN; ECV; Tibetan Plateau</p>


2015 ◽  
Vol 163 ◽  
pp. 91-110 ◽  
Author(s):  
Jiangyuan Zeng ◽  
Zhen Li ◽  
Quan Chen ◽  
Haiyun Bi ◽  
Jianxiu Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document