Probabilistic Flood Hazard Assessment Method Considering Local Intense Precipitation at NPP Sites

2021 ◽  
pp. 126192
Author(s):  
Beom-jin Kim ◽  
Minkyu Kim ◽  
Daegi Hahm ◽  
Kun Yeun Han
2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Guido Borzi ◽  
Alejandro Roig ◽  
Carolina Tanjal ◽  
Lucía Santucci ◽  
Macarena Tejada Tejada ◽  
...  

2021 ◽  
Vol 656 (1) ◽  
pp. 012010
Author(s):  
M Zeleňáková ◽  
M Šugareková ◽  
P Purcz ◽  
S Gałaś ◽  
M M Portela ◽  
...  

2019 ◽  
Author(s):  
Attilio Castellarin ◽  
Caterina Samela ◽  
Simone Persiano ◽  
Stefano Bagli ◽  
Valerio Luzzi ◽  
...  

2017 ◽  
Vol 114 (37) ◽  
pp. 9785-9790 ◽  
Author(s):  
Hamed R. Moftakhari ◽  
Gianfausto Salvadori ◽  
Amir AghaKouchak ◽  
Brett F. Sanders ◽  
Richard A. Matthew

Sea level rise (SLR), a well-documented and urgent aspect of anthropogenic global warming, threatens population and assets located in low-lying coastal regions all around the world. Common flood hazard assessment practices typically account for one driver at a time (e.g., either fluvial flooding only or ocean flooding only), whereas coastal cities vulnerable to SLR are at risk for flooding from multiple drivers (e.g., extreme coastal high tide, storm surge, and river flow). Here, we propose a bivariate flood hazard assessment approach that accounts for compound flooding from river flow and coastal water level, and we show that a univariate approach may not appropriately characterize the flood hazard if there are compounding effects. Using copulas and bivariate dependence analysis, we also quantify the increases in failure probabilities for 2030 and 2050 caused by SLR under representative concentration pathways 4.5 and 8.5. Additionally, the increase in failure probability is shown to be strongly affected by compounding effects. The proposed failure probability method offers an innovative tool for assessing compounding flood hazards in a warming climate.


2020 ◽  
Author(s):  
Michelle Bensi ◽  
Somayeh Mohammadi ◽  
Shih-Chieh Kao ◽  
Scott T. DeNeale

2021 ◽  
Author(s):  
Andrea Magnini ◽  
Michele Lombardi ◽  
Simone Persiano ◽  
Antonio Tirri ◽  
Francesco Lo Conti ◽  
...  

<p><span xml:lang="EN-US" data-contrast="auto"><span>Every year flood events cause worldwide vast economic losses, as well as heavy social and environmental impacts, which have been steadily increasing for the last five decades due to the complex interaction between climate change and anthropogenic pressure (</span></span><span xml:lang="EN-US" data-contrast="auto"><span>i.e.</span></span><span xml:lang="EN-US" data-contrast="auto"><span> land-use and land-cover modifications). As a result, the body of literature on flood risk assessment is constantly and rapidly expanding, aiming at developing faster, computationally lighter and more efficient methods relative to the traditional and resource</span></span><span xml:lang="EN-US" data-contrast="auto"><span>-</span></span><span xml:lang="EN-US" data-contrast="auto"><span>intensive hydrodynamic numerical models. Recent and reliable fast-processing techniques for flood hazard assessment and mapping consider binary geomorphic classifiers retrieved from the analysis of Digital Elevation Models (DEMs). These procedures (termed herein “DEM-based methods”) produce binary maps distinguishing between floodable and non-floodable areas based on the comparison between the local value of the considered geomorphic classifier and a threshold, which in turn is calibrated against existing flood hazard maps. Previous studies have shown the reliability of DEM-based methods using a single binary classifier, they also highlighted that different classifiers are associated with different performance, depending on the geomorphological, climatic and hydrological characteristics of the study area. The present study maps flood-prone areas and predicts water depth associated with a given non-exceedance probability by combining several geomorphic classifiers and terrain features through regression trees and random forests. We focus on Northern Italy (c.a. 100000 km</span></span><sup><span xml:lang="EN-US" data-contrast="auto"><span>2</span></span></sup><span xml:lang="EN-US" data-contrast="auto"><span>, including Po, Adige, Brenta, Bacchiglione and Reno watersheds), and we consider the recently compiled MERIT (Multi-Error Removed Improved-Terrain) DEM, with 3sec-resolution (~90m at the Equator). We select the flood hazard maps provided by (</span></span><span xml:lang="EN-US" data-contrast="auto"><span>i</span></span><span xml:lang="EN-US" data-contrast="auto"><span>) the Italian Institute for Environmental Protection and Research (ISPRA), and (ii) the Joint Research Centre (JRC) of the European Commission as reference maps. Our findings (a) confirm the usefulness of machine learning techniques for improving univariate DEM-based flood hazard mapping, (b) enable a discussion on potential and limitations of the approach and (c) suggest promising pathways for further exploring DEM-based approaches for predicting a likely water depth distribution with flood-prone areas.</span></span><span> </span></p>


Sign in / Sign up

Export Citation Format

Share Document