scholarly journals 384 Whole genome linkage analysis followed by whole exome sequencing identifies nicastrin ( NCSTN ) as a causative gene in a multiplex family with γ-secretase associated autoinflammatory skin phenotypes

2016 ◽  
Vol 136 (5) ◽  
pp. S68
Author(s):  
M. Faraji Zonooz ◽  
F. Sabbaghzadeh-Kermani ◽  
Z. Fattahi ◽  
M. Fadaee ◽  
M.R. Akbari ◽  
...  
Hernia ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 95-100 ◽  
Author(s):  
E. Mihailov ◽  
T. Nikopensius ◽  
A. Reigo ◽  
C. Nikkolo ◽  
M. Kals ◽  
...  

2015 ◽  
Vol 97 ◽  
Author(s):  
EYAL REINSTEIN

SummaryWhole-genome and whole-exome sequencing for clinical applications is now an integral part of medical genetics practice. The term newborn screening refers to public health programs designed to screen newborns for various treatable metabolic conditions, by measuring levels of circulating blood metabolites. The availability and significant decrease in sequencing costs has raised the question of whether metabolic newborn screening should be replaced by whole-genome or whole-exome sequencing. While newborn genome sequencing can potentially increase the number of disorders identified by newborn screening, the generalization of its practice raises a number of important ethical issues. This short article argues that there are medical, psychological, ethical and economic reasons why widespread dissemination of newborn screening is still premature.


2018 ◽  
Vol 20 (11) ◽  
pp. 1328-1333 ◽  
Author(s):  
Ahmed Alfares ◽  
Taghrid Aloraini ◽  
Lamia Al subaie ◽  
Abdulelah Alissa ◽  
Ahmed Al Qudsi ◽  
...  

2018 ◽  
Vol 55 (3) ◽  
pp. 198-204 ◽  
Author(s):  
Wen-Bin He ◽  
Chao-Feng Tu ◽  
Qiang Liu ◽  
Lan-Lan Meng ◽  
Shi-Min Yuan ◽  
...  

BackgroundThe genetic causes of the majority of male and female infertility caused by human non-obstructive azoospermia (NOA) and premature ovarian insufficiency (POI) with meiotic arrest are unknown.ObjectiveTo identify the genetic cause of NOA and POI in two affected members from a consanguineous Chinese family.MethodsWe performed whole-exome sequencing of DNA from both affected patients. The identified candidate causative gene was further verified by Sanger sequencing for pedigree analysis in this family. In silico analysis was performed to functionally characterise the mutation, and histological analysis was performed using the biopsied testicle sample from the male patient with NOA.ResultsWe identified a novel homozygous missense mutation (NM_007068.3: c.106G>A, p.Asp36Asn) in DMC1, which cosegregated with NOA and POI phenotypes in this family. The identified missense mutation resulted in the substitution of a conserved aspartic residue with asparaginate in the modified H3TH motif of DMC1. This substitution results in protein misfolding. Histological analysis demonstrated a lack of spermatozoa in the male patient’s seminiferous tubules. Immunohistochemistry using a testis biopsy sample from the male patient showed that spermatogenesis was blocked at the zygotene stage during meiotic prophase I.ConclusionsTo the best of our knowledge, this is the first report identifying DMC1 as the causative gene for human NOA and POI. Furthermore, our pedigree analysis shows an autosomal recessive mode of inheritance for NOA and POI caused by DMC1 in this family.


Sign in / Sign up

Export Citation Format

Share Document