scholarly journals STAT5 Activation in the Dermal Papilla Is Important for Hair Follicle Growth Phase Induction

2016 ◽  
Vol 136 (9) ◽  
pp. 1781-1791 ◽  
Author(s):  
Julien M.D. Legrand ◽  
Edwige Roy ◽  
Jonathan J. Ellis ◽  
Mathias Francois ◽  
Andrew J. Brooks ◽  
...  
2016 ◽  
Vol 136 (5) ◽  
pp. S123
Author(s):  
L. Zhou ◽  
Y. Yang ◽  
T. Andl ◽  
R. Lang ◽  
Y. Zhang

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9867
Author(s):  
Ke Sha ◽  
Mengting Chen ◽  
Fangfen Liu ◽  
San Xu ◽  
Ben Wang ◽  
...  

Platelet-rich plasma (PRP) has been reported recently as a potential therapeutic approach for alopecia, such as androgenetic alopecia, but the exact mechanisms and effects of specific components of this recipe remain largely unknown. In this study, we identified that platelet factor 4 (PF4), a component of PRP, significantly suppressed human hair follicle growth and restrained the proliferation of human dermal papilla cells (hDPCs). Furthermore, our results showed that PF4 upregulated androgen receptor (AR) in human dermal papilla cells in vitro and via hair follicle organ culture. Among the hair growth-promoting and DP-signature genes investigated, PF4 decreased the expression of Wnt5a, Wnt10b, LEF1, HEY1 and IGF-1, and increased DKK1 expression, but did not affect BMP2 and BMP4 expression. Collectively, Our data demonstrate that PF4 suppresses human hair follicle growth possibly via upregulating androgen receptor signaling and modulating hair growth-associated genes, which provides thought-provoking insights into the application and optimization of PRP in treating hair loss.


2014 ◽  
Vol 46 (3) ◽  
pp. 104-111 ◽  
Author(s):  
Bing Zhu ◽  
Teng Xu ◽  
Zhipeng Zhang ◽  
Na Ta ◽  
Xiaoyu Gao ◽  
...  

Dermal papilla is considered the control center of hair follicle growth and hair cycle. The secondary hair follicle (producing cashmere) growth cycle of the Cashmere goat ( Capra hircus) is circannual, and each growth phase can be easily distinguished by its long duration. To identify gene expression patterns and differences of the dermal papilla cell (DPC) between the anagen and telogen phases, we established two DPC lines: ana-DPCs (DPCs derived from the anagen secondary hair follicle) and tel-DPCs (DPCs derived from the telogen secondary hair follicle). Compared with the ana-DPCs, the tel-DPCs lost the capacity to form cell aggregates and showed lower cell proliferation rate. Transcriptome sequencing revealed that 825 genes were differentially expressed by at least threefold between the two DPC lines. These genes were significantly enriched in cell cycle control, cell division, and chromosome partitioning from the Eukaryotic Orthologous Groups of proteins (KOG) database and in cell cycle, cell adhesion molecules, cytokine-cytokine receptor interaction, and p53 signaling pathway from the Kyoto Encyclopedia of Gene and Genomes (KEGG) database. Enrichment analyses revealed that in the middle of the telogen the DPCs of secondary hair follicles (SHFs) seemed on the one hand to promote the degeneration of SHFs and cessation of cashmere growth, while on the other hand to resist self-apoptosis and prepare for the regeneration or revivification of fully functional dermal papillae. These findings provide a better understanding of hair follicle growth and will be useful for identification of novel molecules associated with the control of hair growth cycle.


Stem Cells ◽  
2019 ◽  
Vol 37 (9) ◽  
pp. 1166-1175 ◽  
Author(s):  
Alizée le Riche ◽  
Edith Aberdam ◽  
Laëtitia Marchand ◽  
Elie Frank ◽  
Colin Jahoda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document