dermal papilla
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 207)

H-INDEX

51
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 400
Author(s):  
Gary Ka-Wing Yuen ◽  
Bryan Siu-Yin Ho ◽  
Lish Sheng-Ying Lin ◽  
Tina Ting-Xia Dong ◽  
Karl Wah-Keung Tsim

To search hair growth-promoting herbal extract, a screening platform of having HEK293T fibroblast being transfected with pTOPFLASH DNA construct was developed over a thousand of herbal extracts and phytochemicals were screened. One of the hits was ethanolic extract of Rhizoma Belamcandae, the rhizome of Belamcanda chinensis (L.) DC. Tectoridin, an isoflavone from Rhizoma Belamcandae, was shown to be responsible for this activation of promoter construct, inducing the transcription of pTOPFLASH in the transfected fibroblasts in a dose-dependent manner. The blockage by DKK-1 suggested the action of tectoridin could be mediated by the Wnt receptor. The hair growth-promoting effects of tectoridin were illustrated in human follicular dermal papilla cells and mouse vibrissae organ cultures. In tectoridin-treated dermal papilla cultures, an activation of Wnt signaling was demonstrated by various indicative markers, including TCF/LEF1 transcriptional activity, nuclear translocation of β-catenin, expressions level of mRNAs encoding axin-related protein, (AXIN2), β-catenin, lymphoid enhancer-binding factor-1 (LEF-1), insulin-like growth factor 1 (IGF-1) and alkaline phosphatase (ALP). In addition, an increase of hair shaft elongation was observed in cultured mouse vibrissae upon the treatment of tectoridin. Tectoridin, as well as the herbal extract of Rhizoma Belamcandae, possesses hair promoting activity, which deserves further development.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Taheruzzaman Kazi ◽  
Abir Nagata ◽  
Takatoshi Nakagawa ◽  
Takashi Matsuzaki ◽  
Shigeki Inui

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs). To understand the effect of DPC-EVs on cell differentiation, DPC-EVs were characterized and incubated with ASCs, of monolayer and spheroid cell cultures, in combination with the CAO1/2FP medium specialized for dermal papilla cells (DPCs). DPC-like properties in ASCs were initially evaluated by comparing several genes and proteins with those of DPCs via real-time PCR analysis and immunostaining, respectively. We also evaluated the presence of hair growth-related microRNAs (miRNAs), specifically mir-214-5P, mir-218-5p, and mir-195-5P. Here, we found that miRNA expression patterns varied in DPC-EVs from passage 4 (P4) or P5. In addition, DPC-EVs in combination with CAP1/2FP accelerated ASC proliferation at low concentrations and propagated hair inductive gene expression for versican (vcan), alpha-smooth muscle actin (α-sma), osteopontin (opn), and N-Cam (ncam). Comparison between the expression of hair inductive genes (vcan, α-sma, ctnb, and others), the protein VCAN, α-SMA and β-Catenin (CTNB), and hair inductive miRNAs (mir-214-5P, mir-218-5p, and mir-195-5p) of DPC-EVs revealed similarities between P4 DPC-EVs-treated ASCs and DPCs. We concluded that early passage DPC-EVs, in combination with CAP1/2FP, enabled ASCs to transdifferentiate into DPC-like cells.


2022 ◽  
Vol 12 ◽  
Author(s):  
Juliane M. D. Ahlers ◽  
Cassandra Falckenhayn ◽  
Nicholas Holzscheck ◽  
Llorenç Solé-Boldo ◽  
Sabrina Schütz ◽  
...  

The dermal sheath (DS) is a population of mesenchyme-derived skin cells with emerging importance for skin homeostasis. The DS includes hair follicle dermal stem cells, which exhibit self-renewal and serve as bipotent progenitors of dermal papilla (DP) cells and DS cells. Upon aging, stem cells exhibit deficiencies in self-renewal and their number is reduced. While the DS of mice has been examined in considerable detail, our knowledge of the human DS, the pathways contributing to its self-renewal and differentiation capacity and potential paracrine effects important for tissue regeneration and aging is very limited. Using single-cell RNA sequencing of human skin biopsies from donors of different ages we have now analyzed the transcriptome of 72,048 cells, including 50,149 fibroblasts. Our results show that DS cells that exhibit stem cell characteristics were lost upon aging. We further show that HES1, COL11A1, MYL4 and CTNNB1 regulate DS stem cell characteristics. Finally, the DS secreted protein Activin A showed paracrine effects on keratinocytes and dermal fibroblasts, promoting proliferation, epidermal thickness and pro-collagen production. Our work provides a detailed description of human DS identity on the single-cell level, its loss upon aging, its stem cell characteristics and its contribution to a juvenile skin phenotype.


2022 ◽  
Vol 65 (1) ◽  
pp. 11-19
Author(s):  
Yu Cui ◽  
Chunliang Wang ◽  
Lirong Liu ◽  
Nan Liu ◽  
Jianning He

Abstract. The objective of this study was to identify the expression and distribution of EPHA4 and Ephrin A3 genes in the development and morphogenesis of hair follicles in fine-wool sheep. The results could lay a theoretical basis for understanding the molecular mechanism that regulates hair follicle development. The skin of Aohan fine-wool sheep at different developmental stages (embryonic day 90, E90d, and 120, E120d, and postnatal day 1, B1d, and 30, B30d) were selected. Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were used to study the levels of mRNA and proteins, respectively. The RT-qPCR results showed that the mRNA expression level of EPHA4 at B1d was significantly lower than at E120d (p<0.01). The expression of Ephrin A3 at E120d was significantly higher than that at E90d and B1d (p<0.01). Immunohistochemical detection results showed that the level and localisation of EPHA4 and Ephrin A3 proteins had spatial and temporal specificity. EPHA4 expression in dermal papilla cells might be important for inducing Aohan fine-hair follicle regeneration and for controlling the properties of the hair. Ephrin A3 might play an important role in the redifferentiation of secondary hair follicles and might also be involved in the inhibition of apoptosis-related gene expression in hair follicles. The Ephrin A3 signalling pathway might accelerate the growth of fine-hair follicles and increase the density of hair follicles.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kai Furuya ◽  
So Fujibayashi ◽  
Tao Wu ◽  
Kouhei Takahashi ◽  
Shin Takase ◽  
...  

Abstract Background Testosterone signaling mediates various diseases, such as androgenetic alopecia and prostate cancer. Testosterone signaling is mediated by the androgen receptor (AR). In this study, we fortuitously found that primary and immortalized dermal papilla cells suppressed AR expression, although dermal papilla cells express AR in vivo. To analyze the AR signaling pathway, we exogenously introduced the AR gene via a retrovirus into immortalized dermal papilla cells and comprehensively compared their expression profiles with and without AR expression. Results Whole-transcriptome profiling revealed that the focal adhesion pathway was mainly affected by the activation of AR signaling. In particular, we found that caveolin-1 gene expression was downregulated in AR-expressing cells, suggesting that caveolin-1 is controlled by AR. Conclusion Our whole transcriptome data is critical resources for discovery of new therapeutic targets for testosterone-related diseases.


Author(s):  
Lei Yan ◽  
Tatsuto Kageyama ◽  
Binbin Zhang ◽  
Seiya Yamashita ◽  
Paul J. Molino ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 105
Author(s):  
Kristelle Hughes ◽  
Raimana Ho ◽  
Stéphane Greff ◽  
Gaëtan Herbette ◽  
Edith Filaire ◽  
...  

The term cosmetopoeia refers to the use of plants in folks’ cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2017
Author(s):  
Tingyan Hu ◽  
Sainan Huang ◽  
Xiaoyang Lv ◽  
Shanhe Wang ◽  
Tesfaye Getachew ◽  
...  

Wool curvature is the determining factor for lambskin quality of Hu lambs. However, the molecular mechanism of wool curvature formation is not yet known. MiRNA has been proved to play an important role in hair follicle development, and we have discovered a differentially expressed miRNA, miR-143, in hair follicles of different curl levels. In this study, we first examined the effects of miR-143 on the proliferation and cell cycle of dermal papilla cells using CCK8, EdU and flow cytometry and showed that miR-143 inhibited the proliferation of dermal papilla cells and slowed down the cell cycle. Bioinformatics analysis was performed to predict the target genes KRT71 and CUX1 of miR-143, and both two genes were expressed at significantly higher levels in small waves than in straight lambskin wool (p < 0.05) as detected by qPCR and Western blot (WB). Then, the target relationships between miR-143 and KRT71 and CUX1 were verified through the dual-luciferase assay in 293T cells. Finally, after overexpression and suppression of miR-143 in dermal papilla cells, the expression trend of CUX1 was contrary to that of miR-143. Meanwhile, KRT71 was not detected because KRT71 was not expressed in dermal papilla cells. Therefore, we speculated that miR-143 can target CUX1 to inhibit the proliferation of dermal papilla cells, while miR-143 can target KRT71 to regulate the growth and development of hair follicles, so as to affect the development of hair follicles and ultimately affect the formation of wool curvature.


Sign in / Sign up

Export Citation Format

Share Document