Breathe softly, beetle: Continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura

2008 ◽  
Vol 54 (1) ◽  
pp. 192-203 ◽  
Author(s):  
Pablo E. Schilman ◽  
Alexander Kaiser ◽  
John R.B. Lighton
Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1036
Author(s):  
Frances D. Duncan

The respiratory physiology of three diurnal ultraxerophilous tenebrionid beetles inhabiting either the dune slipface or gravel plain in the Namib Desert was investigated. The role of the mesothoracic spiracles and subelytral cavity in gas exchange was determined by flow-through respirometry. All three species exhibited the discontinuous gas exchange cycles with a distinct convection based flutter period and similar mass specific metabolic rates. There was variation in their respiration mechanics that related to the ecology of the species. The largest beetle species, Onymacris plana, living on the dune slipface, has a leaky subelytral cavity and used all its spiracles for gas exchange. Thus, it could use evaporative cooling from its respiratory surface. This species is a fog harvester as well as able to replenish water through metabolising fats while running rapidly. The two smaller species inhabiting the gravel plains, Metriopus depressus and Zophosis amabilis, used the mesothoracic spiracles almost exclusively for gas exchange as well as increasing the proportional length of the flutter period to reduce respiratory water loss. Neither species have been reported to drink water droplets, and thus conserving respiratory water would allow them to be active longer.


2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.


1975 ◽  
Vol 39 (1) ◽  
pp. 47-53 ◽  
Author(s):  
J. A. Loeppky ◽  
U. C. Luft

To clarify the role of O2 stores in the fluctuations in VO2 observed with changing posture, O2 intake (Veo2) and pulmonary capillary O2 transfer (Vpco2) were calculated breath by breath with a box-balloon sprometer and mass spectrometer. Changes in O2 stores of the lungs (O2L) and blood (O2b) were computed assuming metabolic rate (Vco2) constant (O2L = Veo2 - Vpco2; O2b = Vpco2 - Vco2). Measurements were made before, during, and after passive tilt to 60 degrees and on return to recumbency after 10 min erect. From supine to upright O2L increased rapidly and O2b dropped slowly, creating a net deficit in Veo2 of 130 ml in 10 min. Return to supine caused rapid loss in O2L and gain in O2b with a net Veo2 excess of 117 ml. Shifts in O2b were 2.5 times greater but opposite to shifts in O2L. Changes in O2b result from shifts in blood volume and flow more than from changes in cardiac output. Refilling of O2b, matching loss while upright, caused transient hypoxia with significant hyperpnea.


2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


1984 ◽  
Vol 31 (4) ◽  
pp. 176-182
Author(s):  
Dong Cheol Han ◽  
Soo Taek Uh ◽  
Byung Soo Ahn ◽  
Taek Jun Kim ◽  
Choon Sik Park

Sign in / Sign up

Export Citation Format

Share Document