Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia

2019 ◽  
Vol 118 ◽  
pp. 103938 ◽  
Author(s):  
Ya Zheng ◽  
Wei Shen ◽  
Jie Bi ◽  
Meng-Yan Chen ◽  
Rui-Fang Wang ◽  
...  
2009 ◽  
Vol 21 (9) ◽  
pp. 2780-2796 ◽  
Author(s):  
Christine Lelandais-Brière ◽  
Loreto Naya ◽  
Erika Sallet ◽  
Fanny Calenge ◽  
Florian Frugier ◽  
...  

2002 ◽  
Vol 80 (2) ◽  
pp. 79-87 ◽  
Author(s):  
K. TRACY REYNOLDS ◽  
ARY A. HOFFMANN

In Drosophila melanogaster, the maternally inherited endocellular microbe Wolbachia causes cytoplasmic incompatibility (CI) in crosses between infected males and uninfected females. CI results in a reduction in the number of eggs that hatch. The level of CI expression in this species has been reported as varying from partial (a few eggs fail to hatch) to nonexistent (all eggs hatch). We show that male age in this host species has a large impact on the level of CI exhibited and explains much of this variability. Strong CI is apparent when young males are used in crosses. CI declines rapidly with male age, particularly when males are repeatedly mated. Wolbachia from a Canton S line that was previously reported as not causing CI does in fact induce CI when young males are used in crosses, albeit at a weaker level than in other D. melanogaster strains. The strain differences in CI expression are due to host background effects rather than differences in Wolbachia strains. These results highlight the importance of undertaking crosses with a range of male ages and nuclear backgrounds before ascribing particular host phenotypes to Wolbachia strains.


2018 ◽  
Author(s):  
J. Dylan Shropshire ◽  
Jungmin On ◽  
Emily M. Layton ◽  
Helen Zhou ◽  
Seth R. Bordenstein

AbstractWolbachia are maternally-inherited, intracellular bacteria at the forefront of vector control efforts to curb arbovirus transmission. In international field trials, the cytoplasmic incompatibility (CI) drive system of wMel Wolbachia is deployed to replace target vector populations, whereby a Wolbachia– induced modification of the sperm genome kills embryos. However, Wolbachia in the embryo rescue the sperm genome impairment, and therefore CI results in a strong fitness advantage for infected females that transmit the bacteria to offspring. The two genes responsible for the wMel-induced sperm modification of CI, cifA and cifB, were recently identified in the eukaryotic association module of prophage WO, but the genetic basis of rescue is unresolved. Here we use transgenic and cytological approaches to demonstrate that cifA independently rescues CI and nullifies embryonic death caused by wMel Wolbachia in Drosophila melanogaster. Discovery of cifA as the rescue gene and previously one of two CI induction genes establishes a new ‘Two-by-One’ model that underpins the genetic basis of CI. Results highlight the central role of prophage WO in shaping Wolbachia phenotypes that are significant to arthropod evolution and vector control.Significance StatementThe World Health Organization recommended pilot deployment of Wolbachia-infected mosquitoes to curb viral transmission to humans. Releases of mosquitoes are underway worldwide because Wolbachia can block replication of these pathogenic viruses and deterministically spread by a drive system termed cytoplasmic incompatibility (CI). Despite extensive research, the underlying genetic basis of CI remains only half-solved. We recently reported that two prophage WO genes recapitulate the modification component of CI in a released strain for vector control. Here we show that one of these genes underpins rescue of CI. Together, our results reveal the complete genetic basis of this selfish trait and pave the way for future studies exploring WO prophage genes as adjuncts or alternatives to current control efforts.


2018 ◽  
Author(s):  
John M. McLaughlin ◽  
Daniel F.Q. Smith ◽  
Irina E. Catrina ◽  
Diana P. Bratu

ABSTRACTEmbryonic axis patterning in Drosophila melanogaster is partly achieved by mRNAs that are maternally localized to the oocyte; the spatio-temporal regulation of these transcripts’ stability and translation is a characteristic feature of oogenesis. While protein regulatory factors are necessary for the translational regulation of some maternal transcripts (e.g. oskar and gurken), small RNA pathways are also known to regulate mRNA stability and translation in eukaryotes. MicroRNAs (miRNAs) are small RNA regulators of gene expression, widely conserved throughout eukaryotic genomes and essential for animal development. The main D. melanogaster anterior determinant, bicoid, is maternally transcribed, but it is not translated until early embryogenesis. We investigated the possibility that its translational repression during oogenesis is mediated by miRNA activity. We found that the bicoid 3’UTR contains a highly conserved, predicted binding site for miR-305. Our studies reveal that miR-305 regulates the translation of a reporter gene containing the bicoid 3’UTR in cell culture, and that miR-305 only partially contributes to bicoid mRNA translational repression during oogenesis. We also found that Processing bodies (P-bodies) in the egg chamber may play a role in stabilizing bicoid and other maternal transcripts. Here, we offer insights into the possible role of P-bodies and the miRNA pathway in the translational repression of bicoid mRNA during oogenesis.


Author(s):  
Cristina Gómez-Martín ◽  
Ricardo Lebrón ◽  
Antonio Rueda ◽  
José L. Oliver ◽  
Michael Hackenberg

Plant Methods ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Diego López-Márquez ◽  
Ángel Del-Espino ◽  
Eduardo R. Bejarano ◽  
Carmen R. Beuzón ◽  
Javier Ruiz-Albert

mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Jessamyn I. Perlmutter ◽  
Jane E. Meyers ◽  
Seth R. Bordenstein

ABSTRACT Endosymbiotic bacteria in the genus Wolbachia remarkably infect nearly half of all arthropod species. They spread in part because of manipulations of host sexual reproduction that enhance the maternal transmission of the bacteria, including male killing (death of infected males) and unidirectional cytoplasmic incompatibility (CI; death of offspring from infected fathers and uninfected mothers). Recent discoveries identified several genes in prophage WO of Wolbachia (wmk, cifA, and cifB) that fully or partially recapitulate male killing or CI when transgenically expressed in Drosophila melanogaster. However, it is not yet fully resolved if other gene candidates contribute to these phenotypes. Here, we transgenically tested 10 additional gene candidates for their involvement in male killing and/or CI. The results show that despite sequence and protein architecture similarities or comparative associations with reproductive parasitism, transgenic expression of the candidates does not recapitulate male killing or CI. Sequence analysis across Wmk and its closest relatives reveals amino acids that may be important to its function. In addition, evidence is presented to propose new hypotheses regarding the relationship between wmk transcript length and its ability to kill a given host, as well as copy number of wmk homologs within a bacterial strain, which may be predictive of host resistance. Together, these analyses continue to build the evidence for identification of wmk, cifA, and cifB as the major genes that have thus far been shown to cause reproductive parasitism in Wolbachia, and the transgenic resources provide a basis for further functional study of phage WO genes. IMPORTANCE Wolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster. Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes.


2010 ◽  
Vol 38 (suppl_2) ◽  
pp. W385-W391 ◽  
Author(s):  
Po-Jung Huang ◽  
Yi-Chung Liu ◽  
Chi-Ching Lee ◽  
Wei-Chen Lin ◽  
Richie Ruei-Chi Gan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document