Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from Puerto Rico and Florida

2015 ◽  
Vol 127 ◽  
pp. 81-86 ◽  
Author(s):  
Vikash Dangal ◽  
Fangneng Huang
2013 ◽  
Vol 138 (5) ◽  
pp. 315-325 ◽  
Author(s):  
A. M. Vélez ◽  
T. A. Spencer ◽  
A. P. Alves ◽  
A. L. B. Crespo ◽  
B. D. Siegfried

2020 ◽  
Author(s):  
Katrina A. Schlum ◽  
Kurt Lamour ◽  
Caroline Placidi de Bortoli ◽  
Rahul Banerjee ◽  
Scott J. Emrich ◽  
...  

AbstractThe fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of >80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and the United States (USA) were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest panmixia in this population, other than a minor reduction in gene flow between the two overwintering populations in the continental USA that also corresponded to genetically distinct host strains. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. Comparisons between laboratory-reared and field collected S. frugiperda support similar genomic diversity, validating the experimental use of laboratory strains. Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Katrina A. Schlum ◽  
Kurt Lamour ◽  
Caroline Placidi de Bortoli ◽  
Rahul Banerjee ◽  
Robert Meagher ◽  
...  

Abstract Background The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is a highly polyphagous agricultural pest with long-distance migratory behavior threatening food security worldwide. This pest has a host range of > 80 plant species, but two host strains are recognized based on their association with corn (C-strain) or rice and smaller grasses (R-strain). The population genomics of the United States (USA) fall armyworm remains poorly characterized to date despite its agricultural threat. Results In this study, the population structure and genetic diversity in 55 S. frugiperda samples from Argentina, Brazil, Kenya, Puerto Rico and USA were surveyed to further our understanding of whole genome nuclear diversity. Comparisons at the genomic level suggest a panmictic S. frugiperda population, with only a minor reduction in gene flow between the two overwintering populations in the continental USA, also corresponding to distinct host strains at the mitochondrial level. Two maternal lines were detected from analysis of mitochondrial genomes. We found members from the Eastern Hemisphere interspersed within both continental USA overwintering subpopulations, suggesting multiple individuals were likely introduced to Africa. Conclusions Our research is the largest diverse collection of United States S. frugiperda whole genome sequences characterized to date, covering eight continental states and a USA territory (Puerto Rico). The genomic resources presented provide foundational information to understand gene flow at the whole genome level among S. frugiperda populations. Based on the genomic similarities found between host strains and laboratory vs. field samples, our findings validate the experimental use of laboratory strains and the host strain differentiation based on mitochondria and sex-linked genetic markers extends to minor genome wide differences with some exceptions showing mixture between host strains is likely occurring in field populations.


Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 831
Author(s):  
Rebeca Gutierrez-Moreno ◽  
David Mota-Sanchez ◽  
Carlos A. Blanco ◽  
Desmi Chandrasena ◽  
Christina Difonzo ◽  
...  

Fall armyworm is one of the main pests of conventional and Bacillus thuringiensis (Bt) corn in many countries in the Americas, Africa, Asia and in Australia. We conducted diet-overlay bioassays to determine the status of susceptibility to four Bt proteins (Cry1A.105, Cry2Ab2, Cry1F and Cry1Ac) in three different populations of fall armyworm from Mexico, and one population from Puerto Rico. Bioassays showed that fall armyworms from Puerto Rico were resistant to Cry1F with a resistance ratio 50 (RR50) higher than 10,000 ng/cm2 and to Cry1Ac with a RR50 = 12.2 ng/cm2, displaying the highest median lethal concentration (LC50) values to all Bt proteins tested. The effective concentration 50 (EC50) values further confirmed the loss of susceptibility to Cry1F and Cry1Ac in this population. However, LC50 and EC50 results with Cry1A.105 and Cry2Ab2 revealed that fall armyworm from Puerto Rico remained largely susceptible to these two proteins. The Mexican populations were highly susceptible to all the Bt proteins tested and displayed the lowest LC50 and EC50 values to all Bt proteins. Our results suggest that Cry1F and Cry1Ac resistance is stable in fall armyworm from Puerto Rico. However, this population remains susceptible to Cry1A.105 and Cry2Ab2. Results with Mexican fall armyworms suggest that possible deployment of Bt corn in Mexico will not be immediately challenged by Bt-resistant genes in those regions.


Author(s):  
Cínthia G. Garlet ◽  
Dionei S. Muraro ◽  
Daniela N. Godoy ◽  
Gisele E. Cossa ◽  
Manoela R. Hanich ◽  
...  

Abstract Fall armyworm (FAW), Spodoptera frugiperda (Smith), is one of the major pests targeted by transgenic crops expressing insecticidal proteins from Bacillus thuringiensis (Bt) Berliner. However, FAW presents a high capacity to develop resistance to Bt protein-expressing crop lines, as reported in Brazil, Argentina, Puerto Rico and the southeastern U.S. Here, FAW genotypes resistant to pyramided maize events expressing Cry1F/Cry1A.105/Cry2Ab2 (P-R genotype) and Cry1A.105/Cry2Ab2 (Y-R genotype) from Brazil were used to investigate the interactions between non-Bt hosts (non-Bt maize, non-Bt cotton, millet and sorghum) and fitness costs. We also tested a FAW genotype susceptible to Bt maize and F1 hybrids of the resistant and susceptible genotypes (heterozygotes). Recessive fitness costs (i.e., costs affecting the resistant insects) were observed for pupal and neonate to adult survival of the P-R genotype on non-Bt cotton; larval developmental time of the P-R genotype on millet and sorghum; larval and neonate-to-adult developmental time of the Y-R genotype on non-Bt cotton and sorghum; the fecundity of the Y-R genotype on non-Bt cotton; and mean generation time of both resistant genotypes. However, on non-Bt cotton and non-Bt maize, the P-R genotype had a higher fitness (i.e., fitness benefits), displaying greater fecundity and rates of population increases than the Sus genotype. Non-recessive fitness costs (i.e., costs affecting heterozygotes) were found for fecundity and population increases on millet and sorghum. These findings suggest that, regardless of the disadvantages of the resistant genotypes in some hosts, the resistance of FAW to Cry1 and Cry2 Bt proteins is not linked with substantial fitness costs, and may persist in field conditions once present.


Sign in / Sign up

Export Citation Format

Share Document