host strains
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 24)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 2 ◽  
Author(s):  
Marion Orsucci ◽  
Yves Moné ◽  
Philippe Audiot ◽  
Sylvie Gimenez ◽  
Sandra Nhim ◽  
...  

2021 ◽  
Author(s):  
Nathalia C. Oliveira ◽  
Pedro A.P. Rodrigues ◽  
Fernando L. Cônsoli

AbstractThe fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named “rice” and “corn” strains. Our goal was to identify the occurrence of core members in the gut bacterial community of Fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains neither was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain, suggesting that these bacteria may maintain true symbiotic relationships with the fall armyworm. Further investigations are required for a deeper understanding of the nature of this relationship.


2021 ◽  
Author(s):  
Mohammad Moniruzzaman ◽  
Frank Aylward

Chlamydomonas reinhardtii is an important eukaryotic alga that has been studied as a model organism for decades. Despite extensive history as a model system, phylogenetic and genetic characteristics of viruses infecting this alga have remained elusive. We analyzed high-throughput genome sequence data of numerous C. reinhardtii isolates, and in six strains we discovered endogenous genomes of giant viruses reaching over several hundred kilobases in length. In addition, we have also discovered the entire genome of a closely related giant virus that is endogenized within the genome of Chlamydomonas incerta, one of the closest sequenced phylogenetic relatives of C. reinhardtii. Endogenous giant viruses add hundreds of new gene families to the host strains, highlighting their contribution to the pangenome dynamics and inter-strain genomic variability of C. reinhardtii. Our findings suggest that endogenization of giant viruses can have profound implications in shaping the population dynamics and ecology of protists in the environment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sara Abdollahi ◽  
Mohammad Hossein Morowvat ◽  
Amir Savardashtaki ◽  
Cambyz Irajie ◽  
Sohrab Najafipour ◽  
...  

Aims: This study attempted to evaluate the five host strains, including BL21 (DE3), Rosetta (DE3), DH5α, XL1-BLUE, and SHuffle, in terms of arginine deiminase (ADI) production and enzyme activity. Background: Escherichia coli is one of the most preferred host microorganisms for the production of recombinant proteins due to its well-characterized genome, availability of various expression vectors, and host strains. Choosing a proper host strain for the overproduction of a desired recombinant protein is very important because of the diversity of genetically modified expression strains. Various E. coli cells have been examined in different patent applications. Method: ADI was chosen as a bacterial enzyme that degrades L-arginine. It is effective in the treatment of some types of human cancers like melanoma and hepatocellular carcinoma (HCC), which are arginine-auxotrophic. Five mentioned E. coli strains were cultivated. The pET-3a was used as the expression vector. The competent E. coli cells were obtained through the CaCl2 method. It was then transformed with the construct of pET3a-ADI using the heat shock strategy. The ADI production levels were examined by 10% SDS-PAGE analysis. The ability of host strains for the expression of the requested recombinant protein was compared. The enzymatic activity of the obtained recombinant ADI from each studied strain was assessed by a colorimetric 96-well microtiter plate assay. Result: All the five strains exhibited a significant band at 46 kDa. BL21 (DE3) produced the highest amount of ADI protein, followed by Rosetta (DE3). The following activity assay showed that ADI from BL21 (DE3) and Rosetta (DE3) had the most activity. Conclusion: There are some genetic and metabolic differences among the various E. coli strains, leading to differences in the amount of recombinant protein production. The results of this study can be used for the efficacy evaluation of the five studied strains for the production of similar pharmaceutical enzymes. The strains also could be analyzed in terms of proteomics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Blake J. Rasor ◽  
Xiunan Yi ◽  
Hunter Brown ◽  
Hal S. Alper ◽  
Michael C. Jewett

AbstractCell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Feng ◽  
Jie Zhang ◽  
Yuechao Ma ◽  
Yiming Feng ◽  
Shangjun Wang ◽  
...  

AbstractBioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1833
Author(s):  
Camilo Venegas ◽  
Andrea C. Sánchez-Alfonso ◽  
Crispín Celis Zambrano ◽  
Mauricio González Mendez ◽  
Fidson-Juarismy Vesga

The use of a single host strain that allows for an evaluation of the levels of total coliphages in any type of environmental sample would facilitate the detection of and reduction in complexity and costs, favoring countries or areas with technical and economic limitations. The CB390 strain is a candidate for this type of simultaneous determinations, mainly in water samples. The objective of the study was to establish the recovery capacity of the CB390 strain in solid and semi-solid samples and to evaluate the microbiological quality of the sludge generated and stabilized by lime and drying beds in two WWTPs in Colombia. The results of both matrices indicated that CB390 recovered similar numbers of total coliphages (p > 0.05) against the two host strains when evaluated separately. Only the drying bed treatment was able to reduce between 2.0 and 2.9 Log10 units for some microorganisms, while the addition of lime achieved a maximum reduction of 1.3 Log10 units for E. coli. In conclusion, the CB390 strain can be used in solid and semi-solid samples, and the treatment in a drying bed provided a product of microbiological quality. However, the results are influenced by the infrastructure of the WWTP, the treatment conditions, and the monitoring of the stabilization processes.


Author(s):  
Christopher J. Robinson ◽  
Jonathan Tellechea-Luzardo ◽  
Pablo Carbonell ◽  
Adrian J. Jervis ◽  
Cunyu Yan ◽  
...  

Metabolic engineering technologies have been employed with increasing success over the last three decades for the engineering and optimization of industrial host strains to competitively produce high-value chemical targets. To this end, continued reductions in the time taken from concept, to development, to scale-up are essential. Design–Build–Test–Learn pipelines that are able to rapidly deliver diverse chemical targets through iterative optimization of microbial production strains have been established. Biofoundries are employing in silico tools for the design of genetic parts, alongside combinatorial design of experiments approaches to optimize selection from within the potential design space of biological circuits based on multi-criteria objectives. These genetic constructs can then be built and tested through automated laboratory workflows, with performance data analysed in the learn phase to inform further design. Successful examples of rapid prototyping processes for microbially produced compounds reveal the potential role of biofoundries in leading the sustainable production of next-generation bio-based chemicals.


Sign in / Sign up

Export Citation Format

Share Document