Shrinkage estimation in exponential type-II censored data under LINEX loss

2008 ◽  
Vol 37 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Gyan Prakash ◽  
D.C. Singh
2015 ◽  
Vol 44 (4) ◽  
pp. 3-15 ◽  
Author(s):  
Sanku Dey ◽  
Tanujit Dey ◽  
Sudhansu S. Maiti

This paper derives Bayes shrinkage estimator of Rayleigh parameter and its associated risk based on conjugate prior under the assumption of general entropy loss function for progressive type-II censored data. Risk function of maximum likelihood estimate, Bayes estimate and Bayes shrinkage estimate have also been derived and compared. A procedure has been suggested to include a guess value in case of the Bayes shrinkage estimation. Risk function of empirical Bayes estimate and empirical Bayes shrinkage estimate have also been derived and compared. In conclusion, an illustrative example is presented to assess how the Rayleigh distribution fits a real data set.


2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
J. B. Shah ◽  
M. N. Patel

We derive Bayes estimators of reliability and the parameters of a two- parameter geometric distribution under the general entropy loss, minimum expected loss and linex loss, functions for a noninformative as well as beta prior from multiply Type II censored data. We have studied the robustness of the estimators using simulation and we observed that the Bayes estimators of reliability and the parameters of a two-parameter geometric distribution under all the above loss functions appear to be robust with respect to the correct choice of the hyperparameters a(b) and a wrong choice of the prior parameters b(a) of the beta prior.


2018 ◽  
Vol 2018 ◽  
pp. 1-29
Author(s):  
Jyun-You Chiang ◽  
Shuai Wang ◽  
Tzong-Ru Tsai ◽  
Ting Li

This paper studies a discriminant problem of location-scale family in case of prediction from type II censored samples. Three model selection approaches and two types of predictors are, respectively, proposed to predict the future order statistics from censored data when the best underlying distribution is not clear with several candidates. Two members in the location-scale family, the normal distribution and smallest extreme value distribution, are used as candidates to illustrate the best model competition for the underlying distribution via using the proposed prediction methods. The performance of correct and incorrect selections under correct specification and misspecification is evaluated via using Monte Carlo simulations. Simulation results show that model misspecification has impact on the prediction precision and the proposed three model selection approaches perform well when more than one candidate distributions are competing for the best underlying distribution. Finally, the proposed approaches are applied to three data sets.


2017 ◽  
Vol 34 (7) ◽  
pp. 1111-1122 ◽  
Author(s):  
Soumya Roy ◽  
Biswabrata Pradhan ◽  
E.V. Gijo

Purpose The purpose of this paper is to compare various methods of estimation of P(X<Y) based on Type-II censored data, where X and Y represent a quality characteristic of interest for two groups. Design/methodology/approach This paper assumes that both X and Y are independently distributed generalized half logistic random variables. The maximum likelihood estimator and the uniformly minimum variance unbiased estimator of R are obtained based on Type-II censored data. An exact 95 percent maximum likelihood estimate-based confidence interval for R is also provided. Next, various Bayesian point and interval estimators are obtained using both the subjective and non-informative priors. A real life data set is analyzed for illustration. Findings The performance of various point and interval estimators is judged through a detailed simulation study. The finite sample properties of the estimators are found to be satisfactory. It is observed that the posterior mean marginally outperform other estimators with respect to the mean squared error even under the non-informative prior. Originality/value The proposed methodology can be used for comparing two groups with respect to a suitable quality characteristic of interest. It can also be applied for estimation of the stress-strength reliability, which is of particular interest to the reliability engineers.


Sign in / Sign up

Export Citation Format

Share Document