scholarly journals WITHDRAWN: Effects of tyre rubber fibre and glass fibre on physical and mechanical properties of compressed earth block (C.E.B) based on local materials

Author(s):  
Melik Bekhiti ◽  
Abderrahmane Ghrieb ◽  
Rebih Zaitri
2011 ◽  
Vol 471-472 ◽  
pp. 391-396 ◽  
Author(s):  
M.A. Azmi ◽  
Hasan Zuhudi Abdullah ◽  
Maizlinda Izwana Idris

In this work, sandwich composite properties were investigated by addition of coconut coir (CC). Fibres in the polyurethane foam cores ranges from 0 to 20 wt.%. Glass fibre reinforced epoxy panels were used as a skin and polyurethane foam as a core, these materials adhesively bonded to keep the whole structure attached with each other. Sandwich composite skins and core-skin bonding were attained via adhesive bonding technique. While polyurethane foam reinforced by coconut coir fibres were manufactured by using one shot process and polyurethane moulding method. Sandwich composite panels with different coir fibres compositions were subjected to the density test, weight per area test and flexural testing in order to investigate their physical and mechanical properties. From the experimental results and analysis, it was found that the sandwich composites with 10 wt.% of coir fibres offer higher mechanical properties.


2014 ◽  
Vol 59 ◽  
pp. 161-168 ◽  
Author(s):  
Bachir Taallah ◽  
Abdelhamid Guettala ◽  
Salim Guettala ◽  
Abdelouahed Kriker

2020 ◽  
Vol 1 (106) ◽  
pp. 5-16
Author(s):  
W.F. Edris ◽  
Y. Jaradat ◽  
A.O. Al Azzam ◽  
H.M. Al Naji ◽  
S.A. Abuzmero

Purpose: of this paper is to investigate the durability and the mechanical properties, including compressive and flexural strengths, of the locally compressed earth blocks manufactured from soil in Irbid, Jordan. Moreover, effect of volcanic tuff as new stabilizer material on properties of compressed earth block (CEB). Compressed earth block is a technique that was created to solve environmental and economic problems in construction sector. It is widespread in many countries around the world but hasn't been used in Jordan yet. Design/methodology/approach: 9 mixtures were carried out. One of this mixture is the control mix, beside other mixtures were performed by replacing soil with 40%, 10%, 10%, of sand, volcanic tuff, and lime respectively. In addition, polypropylene fibre was used. After 28 days of curing, the CEB were dried in oven at 105ºC for 24 hours then tested. Findings: Show that absorption and erosion were decreased when the lime used in the soil. On the other hand, the fibres presence significantly improved the durability and mechanical properties in all mixtures. Moreover, the higher compressive strength was obtained in the mixtures which contain lime only while the higher tensile strength was obtained in the mixtures which contain lime with sand replacement. The using of volcanic tuffs produced average compressive strength values. The reason is that in the presence of lime and pozzolana (volcanic tuff) reactions take place at low and slow rate at early ages. Research limitations/implications: volcanic tuff can produce favourable compressive strengths at later ages and this is a point of interest in the future work. Originality/value: Searching for a new material as stabilizer material that improves the properties of the compressed earth block (CEB).


2019 ◽  
Vol 16 (1) ◽  
pp. 62-69
Author(s):  
SUBRAMANIAN RAVICHANDRAN ◽  
E. VENGATESAN ◽  
A. RAMAKRISHNAN

Composite materials are replacing traditional materials, because of their superior physical and mechanical properties. The main objective of the present work is to perform stress-strain analysis on Styrene-Ethylene-Butylene-Styrene (SEBS)-epoxy resin composites under reinforcement of fibres and dispersion of CuO, ZnO, MgO, SiO and TiO2nano metal oxides. Combination of glass fibre with particle reinforcement (GFRPs) applications has increased in recent days. In this study, glass fibre reinforced epoxy composites with different nano metal oxides are developed by compression moulding method and their mechanical properties such as breaking load, elastic limit, plastic range and fracture point are evaluated. The results indicate that the incorporation of nanophase material with glass fibre can improve the properties of composites.


Sign in / Sign up

Export Citation Format

Share Document