compression moulding
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 140)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Aditya Nugraha ◽  
Gesang Nugroho

Penggunaan material komposit semakin beragam seiring dengan kemajuan teknologi di berbagai bidang. Serat karbon merupakan material komposit yang banyak digunakan karena memiliki sifat mekanik yang baik, tahan korosi, memiliki rasio kekuatan terhadap berat jenis yang tinggi. Salah satu aplikasi penggunaan material komposit serat karbon yang sangat terbuka peluang pengembangannya adalah untuk tabung gas. Penelitian ini akan menyajikan desain, proses manufaktur, dan pengujian tabung gas komposit. Proses desain meliputi desain tabung gas komposit, desain cetakan, dan desain bladder. Tabung gas komposit terbuat dari serat karbon dan matriks resin epoxy sebanyak 6 lapis pada dinding tabung. Proses manufaktur dilakukan dengan metode wet bladder compression moulding yaitu dengan menggunakan dua buah mould dari material fiberglass bagian atas dan bawah, dan dengan menggunakan bladder atau kantung bertekanan dari latex untuk menekan material komposit. Uji hidrostatis dilakukan menggunakan manual test pump untuk menguji kekuatan tabung. Hasil pengujian menunjukkan tabung gas komposit serat karbon dapat menahan tekanan hidrostatis  hingga 18 bar.


Author(s):  
A. Ajithram ◽  
J. T. Winowlin Jappes ◽  
I. Siva ◽  
N. C. Brintha

Present work dealt with evaluating the aquatic wastewater hyacinth plant long fibre reinforced withepoxy polymer composite mechanical strength, absorption, characterization, thermal degradation and stability, surface morphology studies. This research work water hyacinth long fibre is used as a reinforcement material and epoxy polymer matrix material is used as a matrix phase material. By utilizing the compression moulding hot press machine the different weight percentages (20, 25, 30, and 35%) of the hyacinth composite samples areproduced.Converting the biological waste into zero waste and useful product concept is achieved in this research. In this work hyacinth, long fibre is extracted with a new novel mechanical way (fabricated machine) of the extraction process. Hyacinth long fibre composite tensile strength (mechanical strength) is varied from 36.42 to 44.62MPa, flexural strength varied from 47.86 to 59.684MPa, and impact strength varied from 0.5 to 3.5J. After the 8th hour of monitoring the composite samples are attained constant values on both water and chemical absorption studies. By utilizing thermogravimetric analysis, x-ray diffraction method, Fourier transform infrared spectroscopy method the essential functional groups present in the hyacinth composites are identified. Based on the final experiment results the hyacinth fibre composite is highly recommended to the usage of profit oriented products.


2021 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Adrien M. Fat Cheung ◽  
Klaudio Bari

The creation of an ideal surfboard is art. The design and construction depend on the individual surfer’s skill level and type of the required performance. In this research, four fuselage concepts were carefully explored to meet the following unique needs: lightweight, strong, and a fast-manufacturing process. The fuselages were manufactured by compression moulding using skin and core materials. The skin material was selected to be unidirectional (UD) carbon fibre, discontinuous carbon fibre (SMC) and Filava quadriaxial fibre impregnated with epoxy, while the core material was selected to be lightweight PVC foam. To assess the mechanical performance, three-point bending has been performed according to BS-ISO 14125 and validated using Finite Element Analysis (FEA) using Ansys software. As expected, the flexural test revealed that the UD carbon fibre fuselage was the strongest and SMC was the weakest, while large deflection was seen in Filava fibre fuselages before failure, showing great reactive flex that promotes projection during surfing. The experimental results show good agreement with FEA simulation, and the locations of the physical failure in the fuselage matches the location of maximum flexural stress obtained from FEA simulation. Although all fuselages were found to carry a surfer weight of 150 kg, including a factor of safety 3, except the SMC fuselage, due to shrinkage. The Filava fibre fuselages were seen to have a large deflection before failure, showing great flexibility to handle high ocean waves. This promotes the potential use of reactive flex in high performance sports equipment, such as surfing boards. A large shrinkage must be taken under consideration during compression moulding that depends on fibre orientation, resin nature, and part geometry.


Author(s):  
Ajithram Arivendan ◽  
Winowlin Jappes Jebas Thangiah ◽  
Siva Irulappasamy ◽  
Brintha Chris

The goal of this study is to investigate the morphological and mechanical characteristics of water hyacinth plant fibre polymer composites using the aquatic waste of water hyacinth plant fibre as a reinforcement material. Our main objective has been to make successive sustainable products for commercial and household use using aquatic waste plants. As a filler material, the eggshell powder is used here, which is derived naturally. The composite sample's mechanical properties are increased by this process. A novel way of extracting fibre from hyacinth is used in this study by fabricating a mechanical fibre extraction machine of our own design. The main aim of this work is to convert the biological waste of water hyacinth plants into successful commercial products. Using compression moulding techniques, fibre reinforced polymer composites are produced from water hyacinth plant extracts. ASTM standards are followed for the evaluation of manufactured samples, mechanical tests, and absorption tests. Utilizing TGA analysis, it is possible to identify the maximum withstand and degrading temperatures of composite samples. In order to determine whether FTIR can reveal chemical functional groups and percentage crystallinity, XRD is used as well. The scanning electron microscope is used to locate fibre clusters and brittle fractures in composite samples. With the help of an epoxy resin matrix, the fibres from water hyacinth can be used to make particleboard and other lightweight materials. By the end of this study, it should be able to demonstrate that water hyacinth plant fibres are suitable for use as reinforcement for an epoxy resin matrix.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pradeep Kumar Panda ◽  
J. Jebastine ◽  
Madhialagan Ramarao ◽  
Shaik Fairooz ◽  
Chirra Kesava Reddy ◽  
...  

Biocomposites with polylactic acid (PLA), nanosilica parts, and water hyacinth fibres have been developed in this experimental study. By changing the weight percentage of nanosilica particulate matter (0, 2, 4, 6, and 8 percent) with PLA and water hyacinth fibres, five composite mates were produced through a double screw extruder and compression moulding machine. According to the ASTM standards, the process to machine, the composite specimens have been adopted from the water jet machining process. The tensile, compression, flexural, impact, hardness, and water absorption tests were performed on the composite specimens to assess various mechanical properties and absorbance behaviour. The test findings reveal the significant improvement in the tensile and flexural properties of the composites. Composites contain 6 percent of the fine nanosilica particles by weight. Concerning adding the growing weight percentage (4 percent) of nanosilica particles to the composites, the water absorption properties of the composites have significantly improved. The tensile strength of 6% nanosilica mixed specimens showed the highest tensile stress rate as 36.93 MPa; the value was nearly 3.5% higher than the 4% nanosilica mixed composite specimens.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
A. Ajithram ◽  
Jappes J. T. Winowlin ◽  
Khan M. Adam ◽  
N. C. Brintha ◽  
Faris Waleed Fekry

In this research, an attempt is made to investigate the abrasive and erosion wear resistance of aquatic waste plant water hyacinth converted fibre-reinforced polymer composites. From a novel approach, the new fibre extraction machine is designed to extract the hyacinth fibre from the parent plant and reinforce it to the epoxy matrix material to produce a natural fibre composite for frictional applications. The extracted fibre is dried in the open sunlight area for 22 to 35 days to remove moisture and external dust particles. Then, different weight percentages (15, 20, 25, 30, and 35) of composite samples are produced with the help of the hot press compression moulding technique. Improved hyacinth composite tribology properties are tested by utilizing the pin on the disk machine. This setup included various processing parameters like load (10, 20, and 30 N), velocities (1, 2, and 3 m/s), speed (160, 320, and 479 rpm), and constant sliding distance condition, and the erosion setup also influences the essential parameters like impact angle (30, 45, and 60°), erodent velocity (1, 2.5, and 3.3 m/s), and discharge rate (28, 41, and 72 g/m). The factorial techniques are used to identify the important design factors. The final results represent the weight loss, volume loss, and erosion rate of hyacinth fibre composite. By utilizing the SEM (scanning electron microscope), the worn surface morphology of different weight percentages of hyacinth fibre samples are analysed. To upgrade the usage of hyacinth reinforced composites for different industrial applications, wear and erosion studies are conducted with different parameter conditions.


2021 ◽  
Vol 945 (1) ◽  
pp. 012061
Author(s):  
Nadzhratul Husna ◽  
Syed Ahmad Farhan ◽  
Mohamed Mubarak Abdul Wahab ◽  
Mohamed Mubarak Abdul Wahab ◽  
Nasir Shafiq ◽  
...  

Abstract Installation of stone wool as thermal insulation in the roof assembly can be adopted to store heat in the living space, if the building is exposed to cold weather, and, inversely, to retard heat from entering the living space, if it is exposed to hot weather. In spite of the effectiveness of stone wool as a roof insulation material, during installation, it can cause irritation to the skin and can be hazardous to the lungs. Therefore, incorporation of stone wool with other materials to form a rigid board, without compromising its effectiveness as a roof insulation material, is imperative. Strength properties of a stone-wool-fibre-reinforced high-density polyethylene (HDPE) composite roof insulation material were studied. Granular silica aerogel, which possesses an ultra-low thermal conductivity, was added as filler to reduce the thermal conductivity of the composite. Hot compression moulding was performed to prepare samples of the composite with varying silica aerogel content of 0, 1, 2, 3, 4, and 5 wt. %. Findings suggest that 2 wt.% is the optimum silica aerogel content as it resulted in the highest flexural strength and modulus, which is 24.4 MPa and 845.85 MPa, respectively, even though it reduced the tensile strength and modulus by 10% and 4.45% respectively, relative to 0 wt. %, which can be considered as inconsequential. Higher silica aerogel content above 2 wt. % may result in poor interfacial adhesion and low compatibility to the stone wool fibre and HDPE, which further reduces the tensile and flexural strengths and moduli of the composite.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Krishna Mohan ◽  
Arul Thayammal Ganesan ◽  
M. Ramarao ◽  
Amol L. Mangrulkar ◽  
S. Rajesh ◽  
...  

Today’s modern, dynamic world would be impossible to imagine without the concept of composite material advancement. Various studies are being conducted in this area in order to reach the desired level. In terms of compatibility, natural fibre reinforced polymer-based composites and synthetic fibre composites are very similar. Because they are lightweight, nontoxic, and nonabrasive, they are very popular with consumers. They are also readily available and affordable. Composite materials made from natural fibre have superior mechanical properties compared to those made from synthetic fibre. As part of this research, an epoxy-based composite with bamboo and sisal fibre reinforcement is examined. Reinforced with epoxy resin, bamboo fibre and sisal fibre are used to make composite materials. The effect of adding bamboo fibre and sisal fibre in various weight percentages on the mechanical behaviour of composites is investigated.


Author(s):  
Naveen R ◽  
◽  
Kumar M ◽  
Mathan A ◽  
Dhushyanath D ◽  
...  

In the recent times, usage of Carbon Fiber Reinforced Plastics (CFRP) is inevitable in almost all the engineering sectors especially in Aerospace industries. In spite of its wide range of applications, the usage is currently limited due to its higher cost while compare to the other forms of composite. To overcome this issue, recent researches have introduced low cost high strength composite materials. The present work attempts to investigate the mechanical properties of hybrid composite made out of Carbon and Basalt fiber. The hybrid composites are fabricated through compression moulding technique with different stacking sequence of ply laminates. The fabricated laminates are then subjected to tensile, flexural, hardness and impact tests as per ASTM standard to characterize the mechanical properties. From the experimental results it is evidenced that the strength of hybrid laminates were strongly dependents on the stacking sequence of fiber reinforcement. The fabricated laminates of carbon fiber as top layer reveal improved mechanical strength than that of basalt fiber as top layer. The microstructural investigations also been done on the fabricated composites and are reported.


Sign in / Sign up

Export Citation Format

Share Document