Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash

2012 ◽  
Vol 35 ◽  
pp. 829-837 ◽  
Author(s):  
Sofia A. Lima ◽  
Humberto Varum ◽  
Almir Sales ◽  
Victor F. Neto
2018 ◽  
Vol 68 (329) ◽  
pp. 148 ◽  
Author(s):  
M. A. Maldonado-García ◽  
U. I. Hernández-Toledo ◽  
P. Montes-García ◽  
P. L. Valdez-Tamez

This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength.


2014 ◽  
Vol 59 ◽  
pp. 161-168 ◽  
Author(s):  
Bachir Taallah ◽  
Abdelhamid Guettala ◽  
Salim Guettala ◽  
Abdelouahed Kriker

2012 ◽  
Vol 34 ◽  
pp. 296-305 ◽  
Author(s):  
Rafael Alavéz-Ramírez ◽  
Pedro Montes-García ◽  
Jacobo Martínez-Reyes ◽  
Delia Cristina Altamirano-Juárez ◽  
Yadira Gochi-Ponce

2021 ◽  
Vol 15 (1) ◽  
pp. 320-329
Author(s):  
Constance Tunje ◽  
Richard Onchiri ◽  
Joseph Thuo

Background: Concrete made using sugarcane bagasse ash as a cement replacement is associated with a reduction in split tensile strength and therefore a need to establish the possible causes of tensile strength reduction and explore ways of mitigating that reduction. Objective: The aim of this study is to establish the possible causes of tensile strength reduction in sugarcane bagasse ash concrete and determine the effect of sisal fiber addition on its mechanical properties. Methods: Scanning Electron Microscopy was first done to analyse concrete microstructure in establishing the possible causes of tensile strength reduction in sugarcane bagasse ash concrete. Thereafter, sisal fiber addition was done by varying aspect ratios and percentages. The effect of the addition was determined on the mechanical properties of bagasse ash concrete accompanied by microstructure studies on extracted fibers and split surfaces of concrete. Results: Concrete microstructure studies revealed that wider cracks due to drying shrinkage and poor bonding properties of sugarcane bagasse ash are the possible causes of tensile strength reduction in bagasse ash concrete. Sisal fiber addition improved the mechanical properties of bagasse ash concrete. Microstructure studies portrayed effective bridging of cracks and good adhesive properties of the fibers. Conclusion: Sisal fibers can be used to improve on the mechanical properties of sugarcane bagasse ash concrete with 100 aspect ratio and 1.5% addition being the optimal combination.


2020 ◽  
Vol 1 (106) ◽  
pp. 5-16
Author(s):  
W.F. Edris ◽  
Y. Jaradat ◽  
A.O. Al Azzam ◽  
H.M. Al Naji ◽  
S.A. Abuzmero

Purpose: of this paper is to investigate the durability and the mechanical properties, including compressive and flexural strengths, of the locally compressed earth blocks manufactured from soil in Irbid, Jordan. Moreover, effect of volcanic tuff as new stabilizer material on properties of compressed earth block (CEB). Compressed earth block is a technique that was created to solve environmental and economic problems in construction sector. It is widespread in many countries around the world but hasn't been used in Jordan yet. Design/methodology/approach: 9 mixtures were carried out. One of this mixture is the control mix, beside other mixtures were performed by replacing soil with 40%, 10%, 10%, of sand, volcanic tuff, and lime respectively. In addition, polypropylene fibre was used. After 28 days of curing, the CEB were dried in oven at 105ºC for 24 hours then tested. Findings: Show that absorption and erosion were decreased when the lime used in the soil. On the other hand, the fibres presence significantly improved the durability and mechanical properties in all mixtures. Moreover, the higher compressive strength was obtained in the mixtures which contain lime only while the higher tensile strength was obtained in the mixtures which contain lime with sand replacement. The using of volcanic tuffs produced average compressive strength values. The reason is that in the presence of lime and pozzolana (volcanic tuff) reactions take place at low and slow rate at early ages. Research limitations/implications: volcanic tuff can produce favourable compressive strengths at later ages and this is a point of interest in the future work. Originality/value: Searching for a new material as stabilizer material that improves the properties of the compressed earth block (CEB).


Sign in / Sign up

Export Citation Format

Share Document