compressed earth block
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 21)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 14 (1) ◽  
pp. 102
Author(s):  
Sihem Larbi ◽  
Abdelkrim Khaldi ◽  
Walid Maherzi ◽  
Nor-Edine Abriak

Due to the increase in demand for building materials and their high prices in most developing countries, many researchers are trying to recycle waste for use as secondary raw materials. The aim of this study is the optimization of a mixture of compressed earth blocks based on two sediments. These sediments were tested through the Vicat test to determine the proportion of each one and the optimal water content. The mixtures were treated by adding 10% of blast furnace slag and different proportions of dissolved glass in a NaOH solution. The results indicated that the mixture of 70% Oran sediments with 30% Sidi Lakhdar sediments treated with 4% glass waste produced a CEB (compressed earth block) with high compressive strength with low porosity. In addition, formulated CEBs have a very good resistance to water immersion.


Author(s):  
Arouna Kaboré ◽  
Zoma Vincent ◽  
Palm Kalifa ◽  
Bathiebo Dieudonné Joseph

The main objective of this work is to find a material that attenuates heat transfer and provides an acceptable indoor environment in the habitat of countries with a hot and dry climate like Burkina Faso. The absence of thermal regulations in Burkina Faso leads to the development of buildings constructed with materials that do not provide thermal comfort. This study therefore aims to compare the thermal performance of local materials such as BLT, BTC, concrete block and adobe in order to propose a material adapted to the hot climate. In this work, a modelling and simulation is conducted with the COMSOL software. The modelling is done on a building of dimensions 4m×3m×3m, built successively with cut laterite block (BLT), compressed earth block (BTC), hollow concrete block, and adobe. As for the simulation, it concerns the evolution of the internal and external temperature of the building. The heat flows on the Northern and Southern sides are neglected due to the overhang of the roof. The results obtained show that the cell built with BTC allows a 4°C reduction, the one built with BLT a 2°C reduction and the one built with adobe a 1.5°C gain compared to the one built with concrete block. Thus, the material that best meets the criteria is BTC.


2021 ◽  
Vol 12 (4) ◽  
pp. 228
Author(s):  
Karim Khiro Sebaa ◽  
Assia Benchouk ◽  
Feth-Ellah Mounir Derfouf ◽  
Khalffallah Mekaideche ◽  
Nabil Abou-Bekr ◽  
...  

Author(s):  
S. E. Ubi ◽  
P. O. Nkra ◽  
R. B. Agbor

The most outstanding problem militating the production of earth block in Nigeria, is the exorbitant prices of cement, rice ash replaced with cement, stabilized compressed earth block to carry load. The main objective of this study was to investigate the sustainability of earthen construction block with a partial replacement of cement using Rice Husk Ash (RHA). RHA is a bye-product material obtained from the combustion of rice husk which consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity using a set of sieves 3.35um - 63um, weigh balance, oven maintained at a temperature of 105°C and 110°C, six meta trays, a bucket, a soap, wire brushes, and a mechanical shaker. It is used as pozzolanic material in earth block. Testing specimen were determined and examine in structural composition by means of unconfined compressive strength hydraulically compressed for crushing the composition of mix with RHA content ranges from 10% to 50% to respectively. The result of the compressed earth block shows a significant resistance of shear strength of 30 to 90 kg/mm2, proving that stabilized earth block can satisfactorily carry load when structurally loaded and can resist tensile and compressive stresses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


2021 ◽  
Vol 09 (01) ◽  
pp. 50-65
Author(s):  
Ousmane Zoungrana ◽  
Maïmouna Bologo/Traoré ◽  
Adamah Messan ◽  
Philbert Nshimiyimana ◽  
Gautier Pirotte

Sign in / Sign up

Export Citation Format

Share Document