Individual risk analysis of high-pressure natural gas pipelines

2008 ◽  
Vol 21 (6) ◽  
pp. 589-595 ◽  
Author(s):  
Young-Do Jo ◽  
Daniel A. Crowl
Author(s):  
Kevin Cicansky ◽  
Glenn Yuen

This Paper presents the method TransCanada PipeLines uses to assess the integrity risks with respect to operating its high pressure natural gas pipelines. TransCanada PipeLines’ experiences, results and successes gained through the implementation of its risk program, TRPRAM (TransCanada Pipelines Risk Assessment Model) are highlighted.


Author(s):  
Maher Nessim ◽  
Wenxing Zhou ◽  
Joe Zhou ◽  
Brian Rothwell ◽  
Martin McLamb

This paper proposes a set of reliability targets that can be used in the design and assessment of onshore natural gas pipelines. The targets were developed as part of a PRCI-sponsored project that aims to establish reliability-based methods as a viable alternative for pipeline design and assessment. The proposed targets are calibrated to meet risk levels that are considered widely acceptable. The proposed criteria are based on a detailed consideration of both societal and individual risk criteria. Two societal risk criteria were considered; the first based on a fixed expectation of the number of fatalities and the second based on a risk aversion function as characterized by an F/N relationship. Societal risk criteria were calibrated to match or exceed the average safety levels implied by current codes. Individual risk criteria were based on published tolerable levels. The target reliability levels corresponding to the three criteria are presented and a recommended set of targets is presented.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Maher Nessim ◽  
Wenxing Zhou ◽  
Joe Zhou ◽  
Brian Rothwell

This paper proposes a set of reliability targets that can be used in the design and assessment of onshore natural gas pipelines. The targets were developed as part of a PRCI-sponsored project that aims to establish reliability-based methods as a viable alternative for pipeline design and assessment. The proposed targets are calibrated to meet risk levels that are considered widely acceptable. The proposed criteria are based on a detailed consideration of both societal and individual risk criteria. Two societal risk criteria were considered: the first based on a fixed expectation of the number of fatalities and the second based on a risk aversion function as characterized by a F/N relationship. Societal risk criteria were calibrated to match or exceed the average safety levels implied by current codes. Individual risk criteria were based on published tolerable levels. The target reliability levels corresponding to the three criteria are presented and a recommended set of targets is presented.


Author(s):  
Maher Nessim ◽  
Wenxing Zhou ◽  
Joe Zhou ◽  
Brian Rothwell

The acceptance criteria used in Reliability Based Design and Assessment (RBDA) are defined as a set of reliability targets (where reliability is defined as 1.0 minus the probability of failure). Because of the linear nature of pipeline systems, reliability targets are defined on a per km-year basis. Such targets are directly applicable to failure causes (or limit states) that are equally likely to occur anywhere along a segment of the pipeline (e.g. equipment impact or yielding/rupture of defect-free pipe under internal pressure). They are, however, not directly applicable for design and assessment situations involving limit states that apply at known specific locations. Examples include design for geotechnical loads on a particular unstable slope or integrity assessment of specific corrosion defects based on in-line inspection data. In previous work, reliability targets for natural gas pipelines have been developed on the basis of appropriate societal and individual risk criteria. This paper describes an approach to adapt these targets, and demonstrate compliance with them, for location-specific limit states. The approach is based on using separate checks to ensure that the individual and societal risk criteria underlying the targets are met. An example is included to demonstrate application of the approach to design a pipeline on an unstable slope.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xian Shan ◽  
Kang Liu ◽  
Pei-Liang Sun

Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.


Sign in / Sign up

Export Citation Format

Share Document