scholarly journals Risk Analysis on Leakage Failure of Natural Gas Pipelines by Fuzzy Bayesian Network with a Bow-Tie Model

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xian Shan ◽  
Kang Liu ◽  
Pei-Liang Sun

Pipeline is the major mode of natural gas transportation. Leakage of natural gas pipelines may cause explosions and fires, resulting in casualties, environmental damage, and material loss. Efficient risk analysis is of great significance for preventing and mitigating such potential accidents. The objective of this study is to present a practical risk assessment method based on Bow-tie model and Bayesian network for risk analysis of natural gas pipeline leakage. Firstly, identify the potential risk factors and consequences of the failure. Then construct the Bow-tie model, use the quantitative analysis of Bayesian network to find the weak links in the system, and make a prediction of the control measures to reduce the rate of the accident. In order to deal with the uncertainty existing in the determination of the probability of basic events, fuzzy logic method is used. Results of a case study show that the most likely causes of natural gas pipeline leakage occurrence are parties ignore signage, implicit signage, overload, and design defect of auxiliaries. Once the leakage occurs, it is most likely to result in fire and explosion. Corresponding measures taken on time will reduce the disaster degree of accidents to the least extent.

2013 ◽  
Vol 401-403 ◽  
pp. 2170-2174 ◽  
Author(s):  
Ya Ping Yang ◽  
Yong Mei Hao ◽  
Zhi Xiang Xing

A Bayesian network quantitative calculation model for urban natural gas pipelines was established by using the unique logic of a Bayesian network in handling complicated risk systems. By using a natural gas pipeline as an example, failure situations such as single factor polymorphism, double factor polymorphism, and multi-factor polymorphism of a pipeline were quantitatively calculated to obtain the probability of top events and the structural importance of basic factors. The proposed method not only reflects clearly the effects of different factors but also predicts the failure state of urban natural gas pipelines comprehensively and accurately. The results of the proposed method can serve as a significant reference for the risk management and fault processing of city natural gas pipelines.


Gases ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 156-179
Author(s):  
Abubakar Jibrin Abbas ◽  
Hossein Hassani ◽  
Martin Burby ◽  
Idoko Job John

As an alternative to the construction of new infrastructure, repurposing existing natural gas pipelines for hydrogen transportation has been identified as a low-cost strategy for substituting natural gas with hydrogen in the wake of the energy transition. In line with that, a 342 km, 36″ natural gas pipeline was used in this study to simulate some technical implications of delivering the same amount of energy with different blends of natural gas and hydrogen, and with 100% hydrogen. Preliminary findings from the study confirmed that a three-fold increase in volumetric flow rate would be required of hydrogen to deliver an equivalent amount of energy as natural gas. The effects of flowing hydrogen at this rate in an existing natural gas pipeline on two flow parameters (the compressibility factor and the velocity gradient) which are crucial to the safety of the pipeline were investigated. The compressibility factor behaviour revealed the presence of a wide range of values as the proportions of hydrogen and natural gas in the blends changed, signifying disparate flow behaviours and consequent varying flow challenges. The velocity profiles showed that hydrogen can be transported in natural gas pipelines via blending with natural gas by up to 40% of hydrogen in the blend without exceeding the erosional velocity limits of the pipeline. However, when the proportion of hydrogen reached 60%, the erosional velocity limit was reached at 290 km, so that beyond this distance, the pipeline would be subject to internal erosion. The use of compressor stations was shown to be effective in remedying this challenge. This study provides more insights into the volumetric and safety considerations of adopting existing natural gas pipelines for the transportation of hydrogen and blends of hydrogen and natural gas.


Author(s):  
Jung-Suk Lee ◽  
Jang-Bog Ju ◽  
Jae-il Jang ◽  
Dongil Kwon ◽  
Woo-sik Kim

There are buried natural gas pipelines of which total length amounts to about 2.1×106m in Korea, and it is very important issue to evaluate FFS (Fitness-for-service) when a crack-like flaw was found in operating pipelines. But, the research about this had not yet been performed in Korea. So, this study constructed a FFS code appropriate to Korean natural gas pipeline through comparing and analyzing API 579 and BS 7910 that are lately. In addition, we developed the user-friendly software based on FFS code, so that field service workers who have little idea about fracture mechanics can use easily. The best merit of this code is that it is possible to evaluate FFS for welding HAZ in Korea natural gas pipeline.


2019 ◽  
Vol 8 (3) ◽  
pp. 122 ◽  
Author(s):  
Shuang Li ◽  
Chengqi Cheng ◽  
Guoliang Pu

With the increasing use and complexity of urban natural gas pipelines, the occurrence of accidents owing to leakage, fire, explosion, etc., has increased. Based on Quantitative Risk Analysis (QRA) models and Geographic Information System (GIS) technology, we put forward a quantitative risk simulation model for urban natural gas pipeline, combining with a multi-level grid-based pre-warning model. We develop a simulation and pre-warning model named QRA-Grid, conducting fire and explosion risk assessment, presenting the risk by using a grid map. Experiments show that by using the proposed method, we can develop a fire and explosion accident pre-warning model for gas pipelines, and effectively predict areas in which accidents will happen. As a result, we can make a focused and forceful policy in areas which have some potential defects in advance, and even carry out urban planning once more, rebuilding it to prevent the risk.


2021 ◽  
Vol 13 (3) ◽  
pp. 510
Author(s):  
Sebastian Iwaszenko ◽  
Piotr Kalisz ◽  
Marcin Słota ◽  
Andrzej Rudzki

The safety of the gas transmission infrastructure is one of the main concerns for infrastructure operating companies. Common gas pipelines’ tightness control is tedious and time-consuming. The development of new methods is highly desirable. This paper focuses on the applications of air-borne methods for inspections of the natural gas pipelines. The main goal of this study is to test an unmanned aerial vehicle (UAV), equipped with a remote sensing methane detector, for natural gas leak detection from the pipeline network. Many studies of the use of the UAV with laser detectors have been presented in the literature. These studies include experiments mainly on the artificial methane sources simulating gas leaks. This study concerns the experiments on a real leakage of natural gas from a pipeline. The vehicle at first monitored the artificial source of methane to determine conditions for further experiments. Then the experiments on the selected section of the natural gas pipelines were conducted. The measurement data, along with spatial coordinates, were collected and analyzed using machine learning methods. The analysis enabled the identification of groups of spatially correlated regions which have increased methane concentrations. Investigations on the flight altitude influence on the accuracy of measurements were also carried out. A range of between 4 m and 15 m was depicted as optimal for data collection in the natural gas pipeline inspections. However, the results from the field experiments showed that areas with increased methane concentrations are significantly more difficult to identify, though they are still noticeable. The experiments also indicate that the lower altitudes of the UAV flights should be chosen. The results showed that UAV monitoring can be used as a tool for the preliminary selection of potentially untight gas pipeline sections.


Author(s):  
Aleksandar Tomic ◽  
Shahani Kariyawasam

A lethality zone due to an ignited natural gas release is often used to characterize the consequences of a pipeline rupture. A 1% lethality zone defines a zone where the lethality to a human is greater than or equal to 1%. The boundary of the zone is defined by the distance (from the point of rupture) at which the probability of lethality is 1%. Currently in the gas pipeline industry, the most detailed and validated method for calculating this zone is embodied in the PIPESAFE software. PIPESAFE is a software tool developed by a joint industry group for undertaking quantitative risk assessments of natural gas pipelines. PIPESAFE consequence models have been verified in laboratory experiments, full scale tests, and actual failures, and have been extensively used over the past 10–15 years for quantitative risk calculations. The primary advantage of using PIPESAFE is it allows for accurate estimation of the likelihood of lethality inside the impacted zone (i.e. receptors such as structures closer to the failure are subject to appropriately higher lethality percentages). Potential Impact Radius (PIR) is defined as the zone in which the extent of property damage and serious or fatal injury would be expected to be significant. It corresponds to the 1% lethality zone for a natural gas pipeline of a certain diameter and pressure when thermal radiation and exposure are taken into account. PIR is one of the two methods used to identify HCAs in US (49 CFR 192.903). Since PIR is a widely used parameter and given that it can be interpreted to delineate a 1% lethality zone, it is important to understand how PIR compares to the more accurate estimation of the lethality zones for different diameters and operating pressures. In previous internal studies, it was found that PIR, when compared to the more detailed measures of the 1% lethality zone, could be highly conservative. This conservatism could be beneficial from a safety perspective, however it is adding additional costs and reducing the efficiency of the integrity management process. Therefore, the goal of this study is to determine when PIR is overly conservative and to determine a way to address this conservatism. In order to assess its accuracy, PIR was compared to a more accurate measure of the 1% lethality zone, calculated by PIPESAFE, for a range of different operating pressures and line diameters. Upon comparison of the distances calculated through the application of PIR and PIPESAFE, it was observed that for large diameters pipelines the distances calculated by PIR are slightly conservative, and that this conservativeness increases exponentially for smaller diameter lines. The explanation for the conservatism of the PIR for small diameter pipelines is the higher wall friction forces per volume transported in smaller diameter lines. When these higher friction forces are not accounted for it leads to overestimation of the effective outflow rate (a product of the initial flow rate and the decay factor) which subsequently leads to the overestimation of the impact radius. Since the effective outflow rate is a function of both line pressure and diameter, a simple relationship is proposed to make the decay factor a function of these two variables to correct the excess conservatism for small diameter pipelines.


2017 ◽  
Vol 37 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Márcio Vinicios Pereira Muniz ◽  
Gilson Brito Alves Lima ◽  
Rodrigo Goyannes Gusmão Caiado ◽  
Osvaldo Luiz Gonçalves Quelhas

Author(s):  
S. M. Suleiman ◽  
Y. G. Li

Natural gas pipeline plays an important role in transporting natural gas over a long distance. Its performance and operating behavior are affected by many factors, such as ambient conditions, natural gas flow rate, operation and control of compressor pumping stations, etc. Better understanding of the performance and behavior of an integrated pipeline-compressor system used for gas transmission will be beneficial to both design and operation of natural gas pipelines. This paper introduces a novel steady-state thermodynamic performance simulation approach for natural gas pipelines based on fundamental thermodynamics with the inclusion of the coupling between a pipeline and compressor pumping stations. A pipeline resistance model, a compressor performance model characterized by an empirical compressor map and a pipeline control schedule for the operation of an integrated pipeline-compressor system are included in the simulation approach. The novel approach presented in this paper allows the analysis of the thermodynamic coupling between compressors and pipes and the off-design performance analysis of the integrated pipeline-compressor system. The introduced simulation approach has been applied to the performance simulation of a typical model pipeline driven by multiple centrifugal compressor pumping stations. It is assumed in the pipeline control schedule that the total pressure at the inlet of compressor stations is kept constant when pipeline operating condition changes. Such pipeline operating conditions include varying ambient temperature and varying natural gas volumetric flow rate. The performance behavior of the pipeline corresponding to the change of operating conditions has been successfully simulated. The introduced pipeline performance simulation approach is generic and can be applied to different pipeline-compressor systems.


Sign in / Sign up

Export Citation Format

Share Document