scholarly journals Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin–Dirichlet boundary conditions

2015 ◽  
Vol 422 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Mabel Cuesta ◽  
Liamidi Leadi
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kwangjoong Kim ◽  
Wonhyung Choi ◽  
Inkyung Ahn

<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.</p>


2019 ◽  
Vol 149 (5) ◽  
pp. 1163-1173
Author(s):  
Vladimir Bobkov ◽  
Sergey Kolonitskii

AbstractIn this note, we prove the Payne-type conjecture about the behaviour of the nodal set of least energy sign-changing solutions for the equation $-\Delta _p u = f(u)$ in bounded Steiner symmetric domains $ \Omega \subset {{\open R}^N} $ under the zero Dirichlet boundary conditions. The nonlinearity f is assumed to be either superlinear or resonant. In the latter case, least energy sign-changing solutions are second eigenfunctions of the zero Dirichlet p-Laplacian in Ω. We show that the nodal set of any least energy sign-changing solution intersects the boundary of Ω. The proof is based on a moving polarization argument.


1993 ◽  
Vol 35 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Patrick J. Browne ◽  
B. D. Sleeman

We are interested in two parameter eigenvalue problems of the formsubject to Dirichlet boundary conditionsThe weight function 5 and the potential q will both be assumed to lie in L2[0,1]. The problem (1.1), (1.2) generates eigencurvesin the sense that for any fixed λ, ν(λ) is the nth eigenvalue ν, (according to oscillation indexing) of (1.1), (1.2). These curves are in fact analytic functions of λ and have been the object of considerable study in recent years. The survey paper [1] provides background in this area and itemises properties of eigencurves.


2001 ◽  
Vol 11 (01) ◽  
pp. 43-56 ◽  
Author(s):  
FRANK R. de HOOG ◽  
ROBERT S. ANDERSSEN

In the analysis of both continuous and discrete eigenvalue problems, asymptotic formulas play a central and crucial role. For example, they have been fundamental in the derivation of results about the inversion of the free oscillation problem of the Earth and related inverse eigenvalue problems, the computation of uniformly valid eigenvalues approximations, the proof of results about the behavior of the eigenvalues of Sturm–Liouville problems with discontinuous coefficients, and the construction of a counterexample to the Backus–Gilbert conjecture. Useful formulas are available for continuous eigenvalue problems with general boundary conditions as well as for discrete eigenvalue problems with Dirichlet boundary condition. The purpose of this paper is the construction of asymptotic formulas for discrete eigenvalue problems with general boundary conditions. The motivation is the computation of uniformly valid eigenvalue approximations. It is now widely accepted that the algebraic correction procedure, first proposed by Paine et al.,13 is one of the simplest methods for computing uniformly valid approximations to a sequence of eigenvalues of a continuous eigenvalue problem in Liouville normal form.8 This relates to the fact that, for Liouville normal forms with Dirichlet boundary conditions, it is not too difficult to prove that such procedures yield, under quite weak regularity conditions, uniformly valid O(h2) approximations. For Liouville normal forms with general boundary conditions, the corresponding error analysis is technically more challenging. Now it is necessary to have, for such Liouville normal forms, higher order accurate asymptotic formulas for the eigenvalues and eigenfunctions of their continuous and discrete counterparts. Assuming that such asymptotic formulas are available, it has been shown1 how uniformly valid O(h2) results could be established for the application of the algebraic correction procedure to Liouville normal forms with general boundary conditions. Algorithmically, this methodology represents an efficient procedure for determining uniformly valid approximations to sequences of eigenvalues, even though it is more complex than for Liouville normal forms with Dirichlet boundary conditions. As well as giving a brief review of the subject for general (Robin) boundary conditions, this paper sketches proofs for the asymptotic formulas, for Robin boundary conditions, which are required in order to construct the mentioned O(h2) results.


Author(s):  
Z. Jin ◽  
K. Lancaster

The asymptotic behaviour of solutions of second-order quasilinear elliptic partial differential equations defined on unbounded domains in Rn contained in strips (when n = 2) or slabs (when n > 2) is investigated when such solutions satisfy Dirichlet boundary conditions and the Dirichlet boundary data have appropriate asymptotic behaviour at infinity. We prove Phragmèn–Lindelöf theorems for large classes of elliptic operators, including uniformly elliptic operators and operators with well-defined genre, establish exponential decay estimates for uniformly elliptic operators when the Dirichlet boundary data vanish outside a compact set, establish the uniqueness of solutions, and give examples of solutions for non-uniformly elliptic operators which decay but do not decay exponentially. Our principal theorems are proven using special barrier functions; these barriers are constructed by considering an operator associated to our original operator.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Malgorzata Klimek

In this study, we consider regular eigenvalue problems formulated by using the left and right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous under the corresponding assumptions. In particular, the range of fractional order is here restricted to interval (1/2,1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in the corresponding Hilbert space. Then, equivalence results for integral and differential versions of respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential fractional and fractional Prabhakar Sturm–Liouville operators.


Sign in / Sign up

Export Citation Format

Share Document