Spectrum of Fractional and Fractional Prabhakar Sturm–Liouville Problems with Homogeneous Dirichlet Boundary Conditions

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2265
Author(s):  
Malgorzata Klimek

In this study, we consider regular eigenvalue problems formulated by using the left and right standard fractional derivatives and extend the notion of a fractional Sturm–Liouville problem to the regular Prabhakar eigenvalue problem, which includes the left and right Prabhakar derivatives. In both cases, we study the spectral properties of Sturm–Liouville operators on function space restricted by homogeneous Dirichlet boundary conditions. Fractional and fractional Prabhakar Sturm–Liouville problems are converted into the equivalent integral ones. Afterwards, the integral Sturm–Liouville operators are rewritten as Hilbert–Schmidt operators determined by kernels, which are continuous under the corresponding assumptions. In particular, the range of fractional order is here restricted to interval (1/2,1]. Applying the spectral Hilbert–Schmidt theorem, we prove that the spectrum of integral Sturm–Liouville operators is discrete and the system of eigenfunctions forms a basis in the corresponding Hilbert space. Then, equivalence results for integral and differential versions of respective eigenvalue problems lead to the main theorems on the discrete spectrum of differential fractional and fractional Prabhakar Sturm–Liouville operators.

2005 ◽  
Vol 42 (2) ◽  
pp. 153-171 ◽  
Author(s):  
Bülent Yilmaz ◽  
O. A. Veliev

In this article we obtain asymptotic formulas of arbitrary order for eigenfunctions and eigenvalues of the nonselfadjoint Sturm-Liouville operators with Dirichlet boundary conditions, when the potential is a summable function. Then using these we compute the main part of the eigenvalues in special cases.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kwangjoong Kim ◽  
Wonhyung Choi ◽  
Inkyung Ahn

<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.</p>


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1297-1304 ◽  
Author(s):  
Martin Bohner ◽  
Hikmet Koyunbakan

We consider a discrete Sturm-Liouville problem with Dirichlet boundary conditions. We show that the specification of the eigenvalues and weight numbers uniquely determines the potential. Moreover, we also show that if the potential is symmetric, then it is uniquely determined by the specification of the eigenvalues. These are discrete versions of well-known results for corresponding differential equations.


Author(s):  
Paul Binding ◽  
Branko Ćurgus

We give an example of an indefinite weight Sturm-Liouville problem whose eigenfunctions form a Riesz basis under Dirichlet boundary conditions but not under anti-periodic boundary conditions.


2011 ◽  
Vol 141 (6) ◽  
pp. 1279-1294 ◽  
Author(s):  
Marius Ghergu

We study the elliptic system −Δu = δ(x)−avp in Ω, −Δv = δ(x)−buq in Ω, subject to homogeneous Dirichlet boundary conditions. Here, Ω ⊂ ℝN, N ≥ 1, is a smooth and bounded domain, δ(x) = dist(x, ∂Ω), a, b ≥ 0 and p, q ∈ ℝ satisfy pq > −1. The existence, non-existence and uniqueness of solutions are investigated in terms of a, b, p and q.


Author(s):  
César E. Torres Ledesma

AbstractThe purpose of this paper is to study the existence of solutions for equations driven by a non-local regional operator with homogeneous Dirichlet boundary conditions. More precisely, we consider the problemwhere the nonlinear term


Sign in / Sign up

Export Citation Format

Share Document