scholarly journals New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence

2016 ◽  
Vol 444 (2) ◽  
pp. 1071-1113 ◽  
Author(s):  
Farid Ammar Khodja ◽  
Assia Benabdallah ◽  
Manuel González-Burgos ◽  
Luz de Teresa
Author(s):  
EL Hadji SAMB

Let the matrix operator $L=D\partial_{xx}+q(x)A_0 $, with  $D=diag(1,\nu)$, $\nu\neq 1$, $q\in L^{\infty}(0,\pi)$, and $A_0$ is a Jordan block of order $1$. We analyze the boundary null controllability  for the system $y_{t}-Ly=0$. When $\sqrt{\nu} \notin \mathbb{Q}_{+}^*$ and  $q$ is constant, $q=1$ for instance, there exists a family of root vectors of $(L^*,\mathcal{D}(L^*))$ forming a Riesz basis of $L^{2}(0,\pi;\mathbb{R}^2 )$. Moreover in  \cite{JFA14} the authors show the existence of a minimal time of control depending on condensation of eigenvalues of $(L^*,\mathcal{D}(L^*))$, that is to say the existence of $T_0(\nu)$ such that the system is null controllable at time $T > T_0(\nu)$ and not null controllable at time  $T < T_0(\nu)$. In the same paper, the authors prove that for all $\tau \in [0, +\infty]$, there exists $\nu \in ]0, +\infty[$ such that $T_0(\nu)=\tau$. When $q$ depends on $x$, the property of Riesz basis is no more guaranteed. This leads to a new phenomena: simultaneous condensation of eigenvalues and eigenfunctions. This condensation affects the time of null controllability.


2014 ◽  
Vol 267 (7) ◽  
pp. 2077-2151 ◽  
Author(s):  
Farid Ammar Khodja ◽  
Assia Benabdallah ◽  
Manuel González-Burgos ◽  
Luz de Teresa

Author(s):  
Long Hu ◽  
Guillaume Olive

The goal of this article is to present the minimal time needed for the null controllability and finite-time stabilization of one-dimensional first-order 2×2 linear hyperbolic systems. The main technical point is to show that we cannot obtain a better time. The proof combines the backstepping method with the Titchmarsh convolution theorem.


Author(s):  
Lijuan Wang ◽  
Qishu Yan

This paper studies a kind of minimal time control problems related to the exact synchronization for a controlled linear system of parabolic equations. Each problem depends on two parameters: the bound of controls and the initial state. The purpose of such a problem is to find a control (from a constraint set) synchronizing components of the corresponding solution vector for the controlled system in the shortest time. In this paper, we build up a necessary and sufficient condition for the optimal time and the optimal control; we also obtain how the existence of optimal controls depends on the above mentioned two parameters.


Sign in / Sign up

Export Citation Format

Share Document