scholarly journals Minimal time of null controllability of two parabolic equations

2020 ◽  
Vol 10 (1) ◽  
pp. 89-112
Author(s):  
Lydia Ouaili ◽  
Author(s):  
EL Hadji SAMB

Let the matrix operator $L=D\partial_{xx}+q(x)A_0 $, with  $D=diag(1,\nu)$, $\nu\neq 1$, $q\in L^{\infty}(0,\pi)$, and $A_0$ is a Jordan block of order $1$. We analyze the boundary null controllability  for the system $y_{t}-Ly=0$. When $\sqrt{\nu} \notin \mathbb{Q}_{+}^*$ and  $q$ is constant, $q=1$ for instance, there exists a family of root vectors of $(L^*,\mathcal{D}(L^*))$ forming a Riesz basis of $L^{2}(0,\pi;\mathbb{R}^2 )$. Moreover in  \cite{JFA14} the authors show the existence of a minimal time of control depending on condensation of eigenvalues of $(L^*,\mathcal{D}(L^*))$, that is to say the existence of $T_0(\nu)$ such that the system is null controllable at time $T > T_0(\nu)$ and not null controllable at time  $T < T_0(\nu)$. In the same paper, the authors prove that for all $\tau \in [0, +\infty]$, there exists $\nu \in ]0, +\infty[$ such that $T_0(\nu)=\tau$. When $q$ depends on $x$, the property of Riesz basis is no more guaranteed. This leads to a new phenomena: simultaneous condensation of eigenvalues and eigenfunctions. This condensation affects the time of null controllability.


2018 ◽  
Vol 8 (1) ◽  
pp. 1057-1082
Author(s):  
Runmei Du ◽  
Jürgen Eichhorn ◽  
Qiang Liu ◽  
Chunpeng Wang

Abstract In this paper, we consider control systems governed by a class of semilinear parabolic equations, which are singular at the boundary and possess singular convection and reaction terms. The systems are shown to be null controllable by establishing Carleman estimates, observability inequalities and energy estimates for solutions to linearized equations.


Author(s):  
Paul Alphonse

We study the partial Gelfand–Shilov regularizing effect and the exponential decay for the solutions to evolution equations associated with a class of accretive non-selfadjoint quadratic operators, which fail to be globally hypoelliptic on the whole phase space. By taking advantage of the associated Gevrey regularizing effects, we study the null-controllability of parabolic equations posed on the whole Euclidean space associated with this class of possibly non-globally hypoelliptic quadratic operators. We prove that these parabolic equations are null-controllable in any positive time from thick control subsets. This thickness property is known to be a necessary and sufficient condition for the null-controllability of the heat equation posed on the whole Euclidean space. Our result shows that this geometric condition turns out to be a sufficient one for the null-controllability of a large class of quadratic differential operators.


2016 ◽  
Vol 54 (1) ◽  
pp. 198-220 ◽  
Author(s):  
Philippe Martin ◽  
Lionel Rosier ◽  
Pierre Rouchon

Sign in / Sign up

Export Citation Format

Share Document